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Abstract
This paper presents a dataset of natural language instructions for object reference in manipulation scenarios. It
is comprised of 1582 individual written instructions which were collected via online crowdsourcing. This dataset is
particularly useful for researchers who work in natural language processing, human-robot interaction, and robotic
manipulation. In addition to serving as a rich corpus of domain-specific language, it provides a benchmark of
image/instruction pairs to be used in system evaluations as well as uncovers inherent challenges in tabletop object
specification. Example code is provided for easy access via Python.
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1 Introduction

In this paper, we present a corpus of natural language
instructions used to specify objects of interest, or target
objects, in a collaborative tabletop manipulation setting.
Understanding and generating natural language is essential
for fluid human-robot collaboration (Scheutz et al. 2006). We
are particularly interested in situations where people need to
set apart the target object from many visually similar objects,
or distractors, and verbally make reference to it. To this end,
we provide a dataset of scenarios, virtual scenes containing
visually similar clutter, accompanied by human generated
instructions specifying tabletop objects. Fig. 1 shows an
example of one such scenario.

These scenarios embody the challenges inherent in
object reference. Clutter is pervasive in environments found
throughout our daily lives (Berenson and Srinivasa 2008)
and can easily form sets of distractors, or objects that make
specifying a goal more difficult. When people intend to
single out an object from the rest and refer to it during
both instruction comprehension and generation, they can
fail due to a range of ambiguities that arise from the
presence of distractors. Ambiguities like object similarity
(the lack of visually distinguishing features between objects),
object proximity (the spatial closeness between objects), and
perspective (the establishment of a fixed visual frame of
reference) can lead to the emergence of multiple candidates
an instruction might refer. Accordingly, people utilize a
multitude of strategies and sources of information to reduce
the ambiguities (Keysar et al. 2000). Identifying these
strategies is important to researchers in the fields of both
Robotics and Natural Language Processing (NLP).

We provide researchers with a dataset from which these
natural language strategies can be extracted. We include
the images used to elicit the instructions (variants of Fig.
1) and the resulting data of human-generated typed natural
language instructions describing a target object in those

Figure 1. Example of a block configuration stimulus image
(Image 13, Configuration Version 2). The block with a red arrow
is the target block. An example of a corresponding instruction:
”Pick up the yellow block which is to the right of the green block
closest to you.”

images. Instructions were generated by human participants
via Amazon’s Mechanical Turk (AMT)1. Data coders labeled
each instruction with the number of objects it could refer to
and the type of perspective present in each instruction. We
also provide a supplementary dataset that assesses the clarity
of each human-generated instruction. We achieved this by

*Both authors contributed equally.
Personal Robotics Laboratory, Robotics Institute, Carnegie Mellon
University, USA

Corresponding author:
Rosario Scalise & Shen Li, Robotics Institute, Carnegie Mellon
University, Pittsburgh, PA, 15213, USA
Email: {rscalise,shenl1}@andrew.cmu.edu

Prepared using sagej.cls [Version: 2015/06/09 v1.01]



2 Journal Title XX(X)

showing each instruction to a new set of AMT participants
and measuring their accuracy in selecting the correct target
object for each of the original instruction/image pairs.

Researchers interested in utilizing natural language
commands to perform collaborative manipulation tasks
(particularly in cluttered environments) should find the
presented corpus valuable in establishing a baseline of
unconstrained human performance when describing objects
on a tabletop subject to ambiguity. NLP researchers can
utilize this as a corpus of referring expressions as well as
a corpus dense with instructional language. Applications
where unambiguous natural language is critical include
providing robotic accessibility in the home to people with
mobility disabilities, enabling mutual understanding via
language in tasks requiring human-robot collaboration such
as a furniture assembly, and interfacing with an industrial
pick-and-place robots (such as circuit board assemblers)
where discrete components can differ only slightly in
appearance.

2 License
This dataset is licensed under a Creative Commons
Attribution 4.0 International (CC BY-SA 4.0) license
(Creative Commons Corporation, 2016). The Massachusetts
Institute of Technology (MIT) license is used for the access
and example code provided.

3 Related Work
In Natural Language Generation (NLG), referring expres-
sions are used by people to specify an entity to an addressee.
For example, a person who intends to refer to a specific
man will say “the man in a suit” to her addressee, so
that the addressee can use attributes “man” and “suit”
from the expression to successfully find the referred entity.
Researchers have been developing corpus-based algorithms
to generate referring expressions and collecting corpora for
evaluation (Krahmer and Van Deemter 2012).

General-purpose corpora have the potential to serve as
resources in work elucidating referring expressions. “Pear
Story of Chafe” is a corpus of narratives which has been
used to study anaphora such as “he” referring to “the
man” (Krahmer and Van Deemter 2012). Map Task corpus
(Anderson et al. 1991) and iMap corpus (Guhe and Bard
2008) contain dialogues in navigational tasks and have been
used to study initial and subsequent references (Viethen
et al. 2010). Coconut corpus (Di Eugenio et al. 2000)
includes goal-oriented dialogues in furniture purchasing
negotiations and has been used to study intentional influence
algorithms (Jordan 2000). Our dataset differs from the
corpora above as it is dedicated to referring expressions in
tabletop manipulation tasks, and expressions are purposed
for object specification.

There are also numerous corpora solely dedicated to
referring expressions. The Bishop corpus (Gorniak and Roy
2004) was collected through a task where one participant
verbally described 30 randomly-positioned cones, one after
another, to a partner. As compared to our corpus, the Bishop
corpus involves many more unknown variables because the
sequences of referred cones are decided by the participants

and expressions may depend on previous dialogues. In the
Drawer corpus (Viethen and Dale 2006), row and column
numbers are used in referring expressions whereas in ours,
row and column numbers, or x and y coordinates, are
purposefully omitted. This is done to remain closely aligned
with the kinds of natural language used when dealing with
unorganized tabletop scenes encountered in our daily lives.
Viethen and Dale (2008) collect GRE3D3, a corpus of
expressions which specify one of three geometric objects.
Our corpus introduces additional complexity in referring
expressions as we place 15 objects in each scene. The TUNA
corpus (Gatt et al. 2007) also differs from our corpus, as it
contains referring expressions for 1 or 2 targets in a top-down
view scene rather than a tabletop manipulation scene, and it
does not involve perspective taking.

In Robotics, researchers have put considerable efforts
into establishing corpora for use in navigational instructions
which are inherently spatial tasks. Skubic et al. (2012)
collected a set of indoor route following instructions, and
MacMahon and Stankiewicz (2006) collected first-person
navigational instructions in a virtual 3D environment. Unlike
our dataset, they place emphasis on environmental landmarks
rather than perspective or ambiguity. While these works
focus on navigational trajectories, we focus on defining
manipulation goals that are not necessarily constrained to
particular trajectories.

Towards the goal of fluent interfacing for robotic tabletop
manipulation, Bisk et al. (2016) contributed a dataset of
instructions to transform one configuration of blocks on
a tabletop to another in which the blocks are uniquely
identified by a number or symbol on its faces. In our dataset,
no numbers or symbols are available, which elicits a richer
set of attributes used in block references. In addition, our
instructions focus much more on object references given that
the only action considered is the ‘pick up’ action.

Recently, there has been an increase in work on inferring
groundings of natural language instructions via probabilistic
graph in navigational tasks (Tellex et al. 2011; Howard et al.
2014; Boularias et al. 2015) and manipulation tasks (Paul
et al. 2016), parsing natural language commands to robot
control system (Matuszek et al. 2013), and reasoning about
commands using cognitive architectures (Oh et al. 2015).
However, the datasets evaluated in Howard et al. (2014);
Boularias et al. (2015); Oh et al. (2015) are focusing on
robot navigation or sequential task plans, while our dataset
is focusing on robot manipulation. Although the datasets
evaluated in Tellex et al. (2011); Paul et al. (2016) are used
for robot manipulation, e.g. object moving and picking up,
our dataset reduces the impacts of various robot actions on
the language and increases the focus on spacial references in
static scenarios. The scenarios with 15 blocks in our dataset
creates a higher complexity for generating and understanding
spacial references than most of the other datasets. Our dataset
also incorporates two conditions, human addressees versus
robot addressees, as described in Sec. 4.2.

The dataset we present draws from a closely related
line of work, with a greater emphasis on the ambiguities
often encountered in real-world settings when issuing
manipulation instructions. For example, when referring to
objects amongst clutter, it is common to inadvertently give
instructions which refer to not only the target object, but
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also distractors. This raises the issues of resolving spatial
references, understanding visual feature landmarks, and
utilizing perspective in an effective manner. Li et al. (2016)
uses this dataset to present initial results that explore these
issues.

4 Data Collection Methods

4.1 Participants and Demographics
All participants were recruited through AMT. 120 partici-
pants were involved in the first study and 356 participants
were involved in the second study. These two groups of
participants were mutually exclusive.

Demographics were collected for each user. We asked
participants to report their Age, Gender, Occupation,
Computer Usage, Hand Dominance, English as Primary
Language, and Experience with Robots, RC Cars, First-
Person Shooter (FPS) Video Games, and Real-Time Strategy
(RTS) Video Games. This information can provide insight
into the backgrounds of people with differing preferences
for communicating with robots and inform how to tailor
communication to specific backgrounds.

We took care to ensure study designs avoided any
confounding participant specific variables such as color-
blindness. For example, red blocks were not used because
red-green color blindness is the significantly predominant
form of the deficiency (Judd 1943).

4.2 Study 1: Collecting Natural Language
Instruction Corpus

The purpose of the first study was to collect a corpus of
natural language used to instruct a partner in picking up
blocks from a cluttered table. Participants gave instructions
with respect to scenarios where it was often challenging to
uniquely identify blocks. Thus, the use of spatial references
or other visually apparent features were necessary for
reliable target specification.

We created a set of stimulus images and presented each
participant with a randomly selected subset. An example
of a stimulus image is shown in Fig. 1. An example of
a corresponding instruction is “Pick up the yellow block
which is to the right of the green block closest to you.”
Each image in the set consists of 15 randomly-spaced,
randomly-colored blocks (orange, yellow, green, or blue)
placed on a table with a silhouetted figure behind the table.
The silhouetted figure represents a partner that the participant
is to interact with. When generating these stimuli, blocks
were confined to boundaries set around the center of the
table and locations/colors were sampled uniformly. Cases in
which two stimuli were too visually similar were eliminated.
We synthesized 14 block configuration images and created 2
versions for each configuration by selecting differing target
blocks indicated by a red arrow in both versions. In total,
there are 28 unique scenarios in the set of stimuli Fig. 2.

We presented each participant with 14 randomly selected
stimuli from the full set of 28. For each stimulus, we asked
the participant to instruct the silhouetted figure to pick up the
block indicated by the arrow. Note that the pariticpant was
primed with the phrase ‘pick up’, however not all participants
use this language. Since the focus of this dataset is not

on actions or verbs, this is inconsequential. We randomly
assigned each participant to one of two partner conditions:
in the human-partner condition, participants were told the
silhouette was another person; in the robot-partner condition,
they were told the silhouette was a robot. The image of the
silhouette stayed constant. The only difference across the
two conditions was the word used to refer to the partner
in the instructions. The participant entered their response
into a textbox in typed natural language. We also asked the
participant to subjectively rate the difficulty of creating the
instruction for each stimulus on the Likert scale (1 (easy) to
5 (difficult)). At the end of the sequence of stimuli, we asked
each participant 1) if they employed any particular strategy
in completing the task, 2) how challenging they found the
overall task, and 3) for their general comments.

We collected 1680 instructions in total, but processed them
with two validity criteria. The first being that the instruction
was grammatically parsable, and the second being that it
could be successfully coded (coding is described in more
detail in the following sections). Following this process,
there remained 1582 valid instructions. For each instruction,
we also captured meta-data such as the total time it took
the participant to write the instruction after being shown the
stimulus.

4.3 Study 2: Evaluating Corpus
In order to evaluate the clarity of a given instruction,
we defined a performance metric based upon object
identification accuracy. For each instruction, we collected
responses from a new set of participants indicating which
block the participant believed the instruction specified within
the corresponding stimulus scenario. The corresponding
stimulus scenario refers to the image originally used to
elicit an instruction with the red arrow removed. We
showed the participant the stimulus/instruction pair with
an interactive selection interface where participants were
allowed to select the target blocks and change their selections
before proceeding to the next scenario.

We sampled a subset of 1400 instructions, with 50
instructions allocated per stimulus, to enforce uniformity
in the dataset and design symmetry in this second study.
We collected 10 final answers per stimulus/instruction pair
across all the new participants. We also recorded the number
of blocks each new participant clicked on before proceeding
to the next scenario and computed the average accuracy for
each original instruction.

4.4 Data Coding
We coded the corpus of instructions for two distinct
purposes. The first purpose was to determine the ambiguity
present within an instruction. To address this, we defined
a set of criteria (Table 1) based upon whether an explicit
perspective was used, and if so which perspective was used:
partner, participant, or neither. We labeled each instruction
with one of these perspective or the ambiguous unknown
perspective which indicates a perspective was used, but not
explicitly. In addition, we labeled each instruction with the
number of blocks that could possibly be inferred from the
instruction without making assumptions. For example, if
there were 3 blocks in the stimulus image which fit the
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Figure 2. All 28 table-top block configuration stimuli arranged by participant subjective difficulty rating

description ‘red block near you’, then the block ambiguity
for the instruction ’Pick up the red block near you.’ would be
3. Continuing with this example, one reason for restricting
subjective assumptions is that one listener could interpret
‘near’ as being the closest block with millimeter accuracy to
the end of the table whereas another listener could interpret
‘near’ as the block closest to their right hand.

Perspective and block ambiguity was manually coded by
four raters. In order to establish inter-rater reliability, we
required each of the four coders to code the same 10% of
the full dataset. We corrected for any discrepancies in coding
until a high inter-rater reliability was achieved. This was
confirmed by conducting pairwise Cohen’s κ tests (Cohen
1968) and averaging the results. For coding perspective,
the κ value was .85 which indicates a very high inter-
rater reliability. For coding block ambiguity, the κ value
was .68 which indicates a high inter-rater reliability. Once
the reliabilities were established, each of the four coders
processed one quarter of the data and the results were
merged.

5 Dataset Details

The dataset can be found at the accompanying website2.

5.1 Instruction Corpus Table
The file named NLICorpusData.csv which contains the
initially collected corpus of natural language instructions is
formatted such that each line corresponds to an individual
instruction (line 0 is a header which contains the field
names). Note that there are multiple instructions which
correspond to a given image. Here, we briefly describe each
field’s relationship to its corresponding instruction.

The Instruction field contains the string entered by the
participant along with an Index for ease of reference.
Each instruction corresponds to a particular Scenario image
which is named by the originating image (synthesized
block configuration) and its variant (v1 or v2). An
example of an image name in this field might be
Configuration 12 v2.png. The AgentType indicates
whether the instruction was given to a human or robot.

Each instruction was also given a Difficulty rating by the
participant which indicates how challenging the they thought
a particular prompt was when they generated the instruction.
Additionally, the TimeToComplete for each instruction was
recorded. The duration was started immediately following
the current prompt loading and ended when the participant

clicked next after entering their instruction and difficulty
rating for the prompt.

At the end of the study, an individual participant is
asked a series of questions to collect additional information
and demographics. Note the participant is only asked
once, however, for each instruction generated by the same
participant, the corresponding answers are repeated in
the table for ease of reference. These questions include
Strategy which asked the user to enter their general
comments on the strategies they might have used to generate
instructions throughout the study, Challenging which asked
how challenging the participant found the overall study,
GeneralComments which asked for the participant’s general
comments on the study, the participant’s Age, Gender,
Occupation, the ComputerUsage habits of the participant
indicated by the number of hours per week, whether the
participant has EnglishAsFirst language, and finally the
participant’s experiences with robots, RC cars, first-person
shooter video games, and real-time strategy video games
indicated by a number between 1-5 according to the Likert
scale (where 1 is strongly disagree and 5 is strongly
agree). Additionally, we assigned a unique user ID to each
participant that is distinct from the Amazon Mechanical Turk
ID.

A summary of all fields is shown in Table 2.

5.2 Corpus Evaluation Table
The file named evaluationData.csv summarizes the
results from the evaluation study. Each line (aside from the
header on line 0) corresponds to an instance of an instruction
given to a participant. Note that there are 10 responses for
each instruction and thus 14000 (1400*10) in total. Many of
the fields are the same as those included in the instruction
corpus table. We will briefly describe the non-overlapping
fields found in the corpus evaluation table.

The NumOfWords field specifies the number of words in
the corresponding instruction. TargetBlockId is the annotated
block number that was specified when the instruction prompt
was given (i.e. the correct target block). ClickedBlockId is the
annotated block number that the participant clicked as their
final decision before pressing the next button. Correctness is
a boolean number indicating whether the clicked block was
the intended target block. In other words, Correctness is true
if and only if the participant made a final selection on the
block that matches the one shown in the prompt during the
first study when the instruction was generated.

Aside from these fields, there are a few which contain
comments that correspond with a particular participant who
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Type P1 P2 Definition or Examples

Participant Perspective + - Referring to the speakers (egocentric)
Pick up the block that is to my rightest. Pick up my leftmost blue block.

Partner Perspective - + Referring to the addressees (addressee-centered)
Pick up the block second from your right. Pick up the block on your left.

Neither Perspective - - Does not take any perspectives
Pick up the red block in a triangle formation. Pick up the block closest to you.

Unknown Perspective ? ? Fails to state perspectives explicitly
Pick up the block to the left of the yellow block. Pick up the block that is on the far right.

Table 1. Possible perspectives (P1-Participant, P2-Partner)

took the study rather than an individual instruction. These
include DiffcultyComm which asks for the participant’s
comments on the overall study difficulty, ObsHardComm
which asks for the participant’s observations on what made
instructions hard to understand, ObsEasyComm which asks
for the participant’s observations on what made instructions
easy to understand, and AddiComm which asks for any
additional comments the participant may have.

An additional file we include named
evaluationDataAvg.csv contains the averaged
responses from 10 participants for each instruction.
Similarly to the instruction corpus table, the average
evaluation table only contains one line per instruction
where the corresponding fields reside on the same
line. ClickedBlockIdList is a list of 10 annotated block
numbers that correspond to each final block selection
made across 10 participants that were assigned the
particular corresponding instruction. It is composed of 10
of the previously mentioned ClickedBlockId fields in the
evaluationData.csv file. InternalIDList is a list of the 10
participants respectively. In a similar fashion, AccuracyAvg
indicates the average correctness for the corresponding
instruction and TimeToCompleteAvg indicates the average
time to complete the evaluation prompt for the corresponding
instruction.

A summary of all fields is shown in Table 3

6 Accessing the Dataset

6.1 Natural Language Instruction Corpus
We provide simple Python code to initialize data
structures which allow for versatile access of the dataset.
The file access NLICorpusData CSV.py loads
NLICorpusData.csv and creates two data structures in
Python for people to access the data (dictionary and
list are Python data structures):

1. a dictionary of list: Each list stores the
values of one particular field across all the participants,
such as NumOfWords.

2. a list of dictionary: Each dictionary stores
the values of all the fields for only one particular
participant, such as NumOfWords.

Note only one data structure is necessary for access, however
each provides different indexing benefits. The argument for
the dictionary is a key corresponding to the field in the
table header while the argument for the list is the index

corresponding to a particular instruction. Basic examples are
included to demonstrate intended usage.

6.2 Supplementary Corpus Evaluation
Similarly, we provide Python code for accessing the
corpus evaluation table. This code functions in exactly
the same manner as the access code for the NLI corpus
table. The file access evaluationData CSV.py
loads both evaluationData.csv and
evaluationDataAvg.csv and creates appropriate
data structures.

For the corpus evaluation table, we include the
original data collected in the JSON format as well as
the easier to view CSV format. We provide access code
named access EvlationationData JSON.py
for the files evaluationData.json and
evaluationDataAvg.json. Note this data is exactly
the same as the above CSV version - it is simply included
for completeness.
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