

Safe and Efficient High Dimensional Motion Planning in Space-Time with Time Parameterized Prediction

Shen Li, Julie Shah{shenli, arnoldj}@mit.edu

Motivation

• Human-robot physical collaboration in close proximity can improve working productivity and efficiency [1].

Challenges

- Planning in space
 - Avoiding all obstacles' swept volumes in the near future.
 - ✓ Safe
 - □ Low flexibility for planning • Overly conservative solutions
- Planning in space and time ✓ **Efficient** obstacle avoidance ✓ High flexibility for planning **Computational complexity**

Contributions

- Combine the advantages from both:
 - ✓ Safe + efficient solutions ✓ Computational efficiency
- Key insights
 - 1. First find a conservative path in C-space (configuration space).
 - 2. Further optimize the path for time parameterization in both C-space and the time domain.
- High-dimensional C-space
- Time domain

Lazy Safe-Interval Shortcut Probabilistic Roadmap Planner (Lazy SISPRM)

Configuration space

Path Sample

- Avoiding all obstacles' swept volumes
- Disregarding timestamps

Shortcut Probabilistic Roadmap (SPRM) A graph composed of a set of shortcuts sampled along the path sample.

As a contingency plan Safe-Interval Shortcut Probabilistic Roadmap

Success

Time domain

(SISPRM)

A graph where each node is a safe interval $\theta q = (q, [t, t'])$, wherein q is collision-free within [t, t'] but not before t or after t'. [2]

Optimal search

• Lazy collision checking

Experiment

- A human hand: $sH \Rightarrow g_{3,4,5,6} \Rightarrow sH$ • 80 trajectories collected in a user study [3].
- Robot: g7 => g2

Metrics

nteractive

- Average execution time
- Average planning time ~ 0.25 sec [4]
- Average path length = L2-Norm in C-space
- Success rate = collision free && goal reached

Avg. Path

Avg. Plan.

Lazy SISPRM

A-SIPP [5] RRT*-τ [7] (1st solution) (1st solution)

KD-RRT- τ [6] ITOMP-τ [8]

Planner			¹	1 1 8 1 4 11
	Rate	Time (s)	Time (ms)	Length (rad)
Lazy SISPRM	97.50%	1.59	171	3.0222
RRT-star-t [7]	95.00%	10.47	114,008	12.8308
Anytime SIPP [5] (Safe Interval Path Planning)	57.50%	1.53	5,446	4.8408
SIPP MP [5] (Motion Primitives)	98.73%	1.70	60,281	2.8093
Anytime SIPP MP [5]	100%	1.71	173	3.0850
Kinodynamic RRT-t [6]	95.00%	6.49	142	10.5751
ITOMP-t [8] (Trajectory Optimization)	92.50%	2.65	320	2.2688
	•	Blue - significance compared against Lazy SISPRM (ANOVA)		

Avg. Exec.

AEROASTRO