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Planning With Uncertain Specifications (PUnS)
Ankit Shah , Shen Li , and Julie Shah

Abstract—Reward engineering is crucial to high performance
in reinforcement learning systems. Prior research into reward
design has largely focused on Markovian functions representing the
reward. While there has been research into expressing non-Markov
rewards as linear temporal logic (LTL) formulas, this has focused
on task specifications directly defined by the user. However, in
many real-world applications, task specifications are ambiguous,
and can only be expressed as a belief over LTL formulas. In this
letter, we introduce planning with uncertain specifications (PUnS),
a novel formulation that addresses the challenge posed by non-
Markovian specifications expressed as beliefs over LTL formulas.
We present four criteria that capture the semantics of satisfying a
belief over specifications for different applications, and analyze the
qualitative implications of these criteria within a synthetic domain.
We demonstrate the existence of an equivalent Markov decision
process (MDP) for any instance of PUnS. Finally, we demonstrate
our approach on the real-world task of setting a dinner table
automatically with a robot that inferred task specifications from
human demonstrations.

Index Terms—Ai-based methods, learning from demonstrations.

I. INTRODUCTION

CONSIDER the task of setting a dinner table. It involves
placing the appropriate serving utensils and cutlery ac-

cording to the dishes being served. It might also require placing
objects in a particular partial order either due to the fact that
they are stacked on top of each other, or due to certain social
conventions. Linear temporal logic (LTL) provides an expres-
sive grammar for capturing these non-Markovian constraints.
Incorporating LTL formulas as specifications for reinforcement
learning ([1], [2], [3]) extends the possibility of applying rein-
forcement learning algorithms to complex non-Markovian tasks.

However, formalizing sound and complete specifications as
an LTL formula is non-trivial. Thus it is desirable to infer
specifications through demonstrations ([4], [5], [6]), or natural
language instructions [7] provided by domain experts. Further
some works also elicit specifications from multiple experts [8].
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However these sources of specifications are inherently ambigu-
ous or potentially contradictory. For example, while learning
the dinner table-setting task from demonstrations, if the learner
only observes the teacher place the dishes before the cutlery, this
could be purely coincidental or it could be a social convention.
An ideal learner would simultaneously consider both these
hypotheses while performing the task. Or in case of eliciting
preferences from multiple experts, two culinary experts might
have strong but differing opinions about the same. Thus in a
general setting, the task specifications cannot be stated as a
single LTL formula, but as a belief over multiple LTL formulas
([4], [5]).

In this letter, we introduce a novel problem formulation for
planning with uncertain specifications (PUnS), which allows
task specifications to be expressed as a distribution over multiple
LTL formulas. We identify four evaluation criteria that capture
the semantics of satisfying a belief over LTL formulas and
analyze the nature of the task executions they entail. Finally, we
demonstrate that an instance of PUnS is equivalent to a reward
machine ([9], [10]), therefore an equivalent MDP formulation
exists for all instances of PUnS.

II. RELATED WORK

Prior research into reinforcement learning has indicated
great promise in sequential decision-making tasks, with break-
throughs in handling large-dimensional state spaces such as
Atari games [11], continuous action spaces ([12], [13]), sparse
rewards ([14], [15]), and all of these challenges in combina-
tion [16]. These were made possible due to the synergy between
off-policy training methods and the expressive power of neural
networks. This body of work has largely focused on algorithms
for reinforcement learning rather than the source of task spec-
ifications; however, reward engineering is crucial to achieving
high performance, and is particularly difficult in complex tasks
where the user’s intent can only be represented as a collection of
preferences [8] or a belief over logical formulas inferred from
demonstrations [4].

Reward design according to user intent has primarily been
studied in the context of Markovian reward functions. Singh
et al. [17] first defined the problem of optimal reward design
with respect to a distribution of target environments. Ratner
et al. [18] and Hadfield-Menell et al. [19] defined inverse reward
design as the problem of inferring the true desiderata of a task
from proxy reward functions provided by users for a set of task
environments. Sadigh et al. [20] developed a model to utilize
binary preferences over executions as a means of inferring the
true reward. Regan and Boutillier [21] proposed algorithms for
computation of robust policies that satisfy the minimax regret
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criterion. However, all of these works only allow for Markovian
reward functions; our proposed framework handles uncertain,
non-Markovian specification expressed as a belief over LTL
formulas.

LTL is an expressive language for representing non-
Markovian properties. There has been considerable interest in
enabling LTL formulas to be used as planning problem specifica-
tions, with applications in symbolic planning ([8], [22], [23]) and
hybrid controller synthesis [24]. There has also been growing
interest in the incorporation of LTL specifications into rein-
forcement learning. Aksaray et al. [1] proposed using temporal
logic variants with quantitative semantics as the reward function.
Littman et al. [2] compiled an LTL formula into a specification
MDP with binary rewards and introduced geometric-LTL, a
bounded time variant of LTL where the time horizon is sampled
from a geometric distribution. Toro Icarte et al. [3] proposed
LPOPL, an algorithm leveraging progressions and multi-task
learning, to compute policies to satisfy any co-safe LTL [25]
specification. Lacerda et al. [26] also developed planners that
resulted in maximal completion of tasks for unsatisfiable spec-
ifications for co-safe LTL formulas. Within the domain of
symbolic planning, expressing task objectives, constraints, and
preferences using a set of LTL formulas was introduced with
PDDL 3.0 [27] for the fifth International Planning Competition
(IPC-5) [28]. Baier et al. [29] proposed a symbolic planner
based capable of handling temporally extended preferences de-
fined in PDDL 3.0, while the algorithm developed by Camacho
et al. [23] is also capable of handling non-deterministic planning
domains. However, while these works consider LTL specifica-
tions directly defined by the user, our framework considers the
problem of planning with a belief over LTL formulas as the task
specification.

Prior research into expressing non-Markov reward functions
for planning under uncertainty has also explored the relationship
between reward functions, formal languages and their finite state
machine representations. Bacchus et al. [30] defined temporally
extended reward functions (TERF) over a set of past-tense LTL
formulas, and demonstrated the existence of an MDP equivalent
to the non-Markov planning problem. In recent work, Camacho
et al. [10] explored the relationship between formal languages
and reward machines defined by Toro Icarte et al. [9]. They
demonstrated that goal specifications written in multiple formal
languages can be translated into equivalent reward machines,
while the reverse transformation was not always possible. Fur-
ther Camacho et al. [31] proposed a reward shaping to improve
the convergence of reinforcement learning algorithms while
planning for sparse rewards generated by a reward machine.
We demonstrate that the MDP reformulation of an instance of
the PUnS problem is an instance of a reward machine.

III. PRELIMINARIES

A. Linear Temporal Logic

Linear temporal logic (LTL), introduced by Pnueli [32],
provides an expressive grammar for describing temporal be-
haviors. An LTL formula is composed of atomic propositions
(discrete time sequences of Boolean literals) and both logical and

temporal operators, and is interpreted over traces [α] of the set of
propositions, α. The notation [α], t |= ϕ indicates that ϕ holds
at time t. The trace [α] satisfies ϕ (denoted as [α] |= ϕ) iff
[α], 0 |= ϕ. The minimal syntax of LTL can be described as
follows:

ϕ ::= p | ¬ϕ1 | ϕ1 ∨ ϕ2 | Xϕ1 | ϕ1Uϕ2 (1)

p is an atomic proposition, and ϕ1 and ϕ2 represent valid LTL
formulas. The operator X is read as “next” and Xϕ1 evaluates
as true at time t if ϕ1 evaluates to true at t+ 1. The operator
U is read as “until” and the formula ϕ1Uϕ2 evaluates as true
at time t1 if ϕ2 evaluates as true at some time t2 > t1 and ϕ1

evaluates as true for all time steps t, such that t1 ≤ t ≤ t2. We
also use the additional propositional logic operators ∧ (and) and
�→ (implies), as well as other higher-order temporal operators:
F (eventually) and G (globally). Fϕ1 evaluates to true at t1 if
ϕ1 evaluates as true for some t ≥ t1. Gϕ1 evaluates to true at
t1 if ϕ1 evaluates as true for all t ≥ t1.

The “safe” and “co-safe” subsets of LTL formulas have been
identified in prior research ([25], [33], [34]). A “co-safe” formula
is one that can always be verified by a trace of a finite length,
whereas a “safe” formula can always be falsified by a finite trace.
Any formula produced by the following grammar is considered
“co-safe”:

ϕco−safe :: = � | p | ¬p | ϕ1

∨ ϕ2 | ϕ1 ∧ ϕ2 | Xϕ | Fϕ | ϕ1Uϕ2 (2)

Similarly, any formula produced by the following grammar is
considered “safe”:

ϕsafe ::= ⊥ |p | ¬p | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | Xϕ | Gϕ | ϕ1Rϕ2

(3)
A formula expressed as ϕ = ϕsafe ∧ ϕco−safe belongs to

the Obligation class of formulas presented in Manna and
Pnueli’s [34] temporal hierarchy.

Finally, a progression Prog(ϕ, αt) over an LTL formula with
respect to a truth assignment αt at time t is defined such that
for a trace of truth assignments over propositions [α]: [α], t |=
ϕ iff [α], t+ 1 |= Prog(ϕ, αt), whereαt is the truth value of the
propositions in the trace [α] at time t. Thus, a progression of an
LTL formula with respect to a truth assignment is a formula that
must hold at the next time step in order for the original formula to
hold at the current time step. Bacchus and Kabanza [35] defined
a list of progression rules for the temporal operators in Equations
1, 2, and 3.

B. Belief Over Specifications

In this letter, we define the specification of our planning
problem as a belief over LTL formulas. A belief over LTL
formulas is defined as a probability distribution with support
over a finite set of formulas with the probability mass function
P : ϕ→ [0, 1]; where ϕ is the set of LTL formulas belonging
to the Obligation class defined by Manna and Pnueli [34]. The
support of P (ϕ) is restricted to a finite set of formulas {ϕ}. The
distribution represents the probability of a particular formula
being the true specification.
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C. Model-Free Reinforcement Learning

A Markov decision process (MDP) is a planning problem
formulation defined by the tuple M = 〈S,A, T,R〉, where S is
the set of all possible states, A is the set of all possible actions,
and T := P (s′ | s, a) is the probability distribution that the next
state will be s′ ∈ S given that the current state is s ∈ S and
the action taken at the current time step is a ∈ A. R : S → R

represents the reward function that returns a scalar value given
a state. Watkins and Dayan proposed Q-learning [36], an off-
policy, model-free algorithm to compute optimal policies in
discrete MDPs. The Q-value function Qπ(s, a) is the expected
discounted value under a policyπ(a | s). In a model-free setting,
the transition function is not known to the learner, and the
Q-value is updated by the learner acting within the environment
and observing the resulting reward. If the Q-value is updated
while not following the current estimate of the optimal policy, it
is considered “off-policy” learning. Given an initial estimate of
the Q-value Q(s, a), the agent performs an action a from state s
to reach s′ while collecting a reward r and a discounting factor
γ ∈ [0, 1). The Q-value function is then updated as follows:

Q(s, a)← (1− α)Q(s, a) + α

(
r + γmax

a′∈A
Q (s,′ a′)

)
(4)

IV. PLANNING WITH UNCERTAIN SPECIFICATIONS (PUNS)

The problem of planning with uncertain specifications (PUnS)
is formally defined as follows: The state representation of the
learning and task environment is denoted by x ∈ X, where
X is a set of features that describe the physical state of the
system. The agent has a set of available actions, A. The state
of the system maps to a set of finite known Boolean propo-
sitions, α ∈ {0, 1}nprop , through a known labeling function,
f : X→ {0, 1}nprops . The specification is provided as a belief
over LTL formulas,P (ϕ); ϕ ∈ {ϕ}, with a finite set of formulas
in its support. The expected output of the planning problem
is a stochastic policy, π{ϕ} : X×A→ [0, 1], that satisfies the
specification.

The binary semantics of satisfying a single logical formula are
well defined; however, there is no single definition for satisfying
a belief over logical formulas. In this work, we present four
criteria for satisfying a specification expressed as a belief over
LTL, and express them as non-Markovian reward functions.
A solution to PUnS optimizes the reward function represent-
ing the selected criteria. Next, using an approach inspired by
LTL-to-automata compilation methods ([37]), we demonstrate
the existence of an MDP that is equivalent to PUnS. The re-
formulation as an MDP allows us to utilize any reinforcement
learning algorithm that accepts an instance of an MDP to solve
the corresponding instance of PUnS.

A. Satisfying Beliefs Over Specifications

A single LTL formula can be satisfied, dissatisfied, or unde-
cided; however, satisfaction semantics over a distribution of LTL
formulas do not have a unique interpretation. We identify the
following four evaluation criteria, which capture the semantics

of satisfying a distribution over specifications, and formulate
each as a non-Markovian reward function:

1) Most likely: This criteria entails executions that satisfy
the formula with the largest probability as per P (ϕ). As a
reward, this is represented as follows:

J([α];P (ϕ)) = 1 ([α] |= ϕ∗)

where ϕ∗ = argmax
ϕ∈{ϕ}

P (ϕ) (5)

where

1([α] |= ϕ) =

{
1, if [α] |= ϕ

−1, otherwise
(6)

2) Maximum coverage: This criteria entails executions that
satisfy the maximum number of formulas in support of the
distribution P (ϕ). As a reward function, it is represented
as follows:

J([α];P (ϕ)) =
∑

ϕ∈{ϕ}
1 ([α] |= ϕ) (7)

3) Minimum regret: This criteria entails executions that
maximize the hypothesis-averaged satisfaction of the for-
mulas in support of P (ϕ). As a reward function, this is
represented as follows:

J([α];P (ϕ)) =
∑

ϕ∈{ϕ}
P (ϕ)1 ([α] |= ϕ) (8)

4) Chance constrained: Suppose the maximum probabil-
ity of failure is set to δ, with ϕδ defined as the set of
formulas such that

∑
ϕ∈ϕδ P (ϕ) ≥ 1− δ; and P (ϕ′) ≤

P (ϕ) ∀ϕ′ /∈ ϕδ, ϕ ∈ ϕδ . This is equivalent to selecting
the most-likely formulas until the cumulative probability
density exceeds the risk threshold. As a reward, this is
represented as follows:

J([α];P (ϕ)) =
∑
ϕ∈ϕδ

P (ϕ)1 ([α] |= ϕ) (9)

Each of these four criteria represents a “reasonable” interpre-
tation of satisfying a belief over LTL formulas, with the choice
between the criteria dependent upon the relevant application. In
a preference elicitation approach proposed by Kim et al. [8],
the specifications within the set {ϕ} are provided by different
experts. In such scenarios, it is desirable to satisfy the largest
common set of specifications, making maximum coverage the
most suitable criteria. When the specifications are inferred from
task demonstrations (such as in the case of Bayesian speci-
fication inference [4]), minimum regret would be the natural
formulation. However, if the formula distribution is skewed
towards a few likely formulas with a long tail of low-probability
formulas, the chance constrained or most likely criteria can be
used to reduce computational overhead in resource-constrained
or time-critical applications.

B. Specification-MDP Compilation

We demonstrate that an equivalent MDP exists for all
instances of PUnS. We represent the task environment as an

Authorized licensed use limited to: MIT. Downloaded on October 07,2024 at 17:38:42 UTC from IEEE Xplore.  Restrictions apply. 



SHAH et al.: PLANNING WITH UNCERTAIN SPECIFICATIONS (PUnS) 3417

Fig. 1. Example compilation process with {ϕ} = {ϕ1, ϕ2} and the minimum
regret criterion. The deterministic MDPsMϕ1 , andMϕ2 are composed through
a cross product to yield the deterministic MDP M{ϕ} corresponding to the set
{ϕ}. The states of M{ϕ} producing a non-zero reward are shaded in gray. Note
that while a naïve enumeration would yield a discrete state space with 12 states,
the breadth-first enumeration generates a minimal set with five states. For clarity,
only the edges corresponding to change of truth value of only a single proposition
are shown, while self transitions are not shown.

MDP sans the reward function, then compile the specification
P (ϕ) into an automaton with terminal reward generating
states. The MDP equivalent of the PUnS problem is generated
through the cross-product of the environment MDP with the
automaton representing P (ϕ). Fig. 1 depicts the compilation
of an illustrative PUnS problem into an automaton representing
a deterministic MDP. The belief over formulas, P (ϕ) has
support {ϕ} = {ϕ1 := G¬T0 ∧ FW2 ∧ ¬W2 UW1, ϕ2 :=
G¬T0 ∧ FW2};P (ϕ1) = 0.3, andP (ϕ2) = 0.7.ϕ1 is satisfied
if “T0” never becomes true and “W1” and “W2” become true in
that order. ϕ2 is satisfied if “T0” never becomes true and “W2”
becomes true eventually.

Given a single LTL formula, ϕ, a Büchi automaton can
be constructed which accepts traces that satisfy the property
represented by ϕ [33]. An algorithm to construct the automaton
was proposed by Gerth et al. [37]. The automata are directed
graphs where each node represents a LTL formula ϕ′ that the
trace must satisfy from that point onward in order to be accepted
by the automaton. An edge, labeled by the truth assignment at a
given time αt, connects a node to its progression, Prog(ϕ,′ αt).
Our decision to restrict ϕ to the Obligation class of temporal
properties (ϕsafe ∧ ϕco−safe) ensures that the automaton con-
structed from ϕ is deterministic and will have terminal states
that represent�,⊥, or ϕsafe [34]. When planning with a single
formula, these terminal states are the reward-generating states
for the overall MDP, as seen in approaches proposed by Littman
et al. [2] and Toro Icarte et al. [3].

An LTL formula can be represented by an equiva-
lent deterministic MDP described by the tuple Mϕ =

〈{ϕ′}, {0, 1}nprop , T,R〉, with the states representing the pos-
sible progressions of ϕ and the actions representing the truth
assignments causing the progressions ([2], [3]). The transition
function is defined as follows:

Tϕ (ϕ′1, ϕ
′
2, α) =

{
1, if ϕ′2 = Prog (ϕ′1, α)
0, otherwise

(10)

The reward function R is a function of the MDP state, and
defined as follows:

Rϕ (ϕ′) =

⎧⎪⎨
⎪⎩
1, if ϕ′ = � orϕ′ = ϕsafe

−1, if ϕ′ = ⊥
0, otherwise

(11)

The equivalent MDPs Mϕ1
, and Mϕ2

corresponding to ϕ1

and ϕ2, with four and three states respectively, are depicted in
Fig. 1. Each state encodes the temporal property that must hold
in the future once the MDP enters that state. For example, Mϕ1

is initially in the state labeled as G¬T0 ∧ FW2 ∧ ¬W2 UW1.
Once the proposition “W1” evaluates as true, the MDP enters
the state labeled by G¬T0 ∧ FW2, that encodes the temporal
property that in the future, “W2” must eventually evaluate as true.
Note that in Fig. 1, only the edges corresponding to changing
truth values of a single propositions are depicted for clarity.

For an instance of PUnS with specification P (ϕ) and sup-
port {ϕ}, a deterministic MDP is constructed by computing
the cross-product of MDPs of the component formulas. Let
〈ϕ′〉 = 〈ϕ′1, . . . ϕ′n〉; ∀ϕ′i ∈ {ϕ} be the progression state for
each of the formulas in {ϕ}; the MDP equivalent of {ϕ} is then
defined as M{ϕ} = 〈{〈ϕ′〉}, {0, 1}nprop , T{ϕ}, R{ϕ}〉. Here, the
states are all possible combinations of the component formu-
las’ progression states, and the actions are propositions’ truth
assignments. The transition is defined as follows:

T{ϕ}
(〈
ϕ′

1

〉
,
〈
ϕ′

2

〉
, α

)
=

{
1, if ϕ′i2 = Prog (ϕ′i1 , α)∀i
0, otherwise

(12)
This MDP reaches a terminal state when all of the formulas

comprising {ϕ} have progressed to their own terminal states.
The reward is computed using one of the criteria represented by
Equations 5, 7, 8, or 9, with 1(. . . ) replaced by Rϕ(ϕ

′). Note
that while 1(. . . ) has two possible values (1 when the formula
is satisfied and −1 when it is not) Rϕ(ϕ

′) has three possible
values (1 when ϕ has progressed to� or ϕsafe,−1 when ϕ has
progressed to ⊥, or 0 when ϕ has not progressed to a terminal
state). Thus, the reward is non-zero only in a terminal state.

Consider the example PUnS problem depicted in Fig. 1.
The initial state of M{ϕ} is labeled 〈G¬T0 ∧ FW2 ∧
¬W2 UW1,G¬T0 ∧ FW2〉. From this state, if W2 evaluates
as true, the MDP transitions into a state labeled 〈⊥,G¬T0〉,
where ϕ1 is dissatisfied, and ϕ2 has progressed to ϕsafe. M{ϕ}
has three terminal states labeled 〈⊥,G¬T0〉, 〈G¬T0, G¬T0〉
and 〈⊥,⊥〉 with corresponding rewards of 0.4, 1.0, and−1.0 as
per the minimum regret criterion.

In the worst case, the size of the automaton of {ϕ} is expo-
nential in |{ϕ}|. In practice, however, many formulas contained
within the posterior may be logically correlated. In the example
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depicted in Fig. 1, a naïve enumeration of the states would have
resulted in 12 discrete states. However there are certain states
such as 〈G¬T0,⊥〉, corresponding to ϕ1 being satisfied and ϕ2

being dissatisfied that are impossible. In fact, the minimal state
space only has five reachable states as depicted in Fig. 1. To
compute a minimal reachable set of states, we start from 〈ϕ〉
and perform a breadth-first enumeration. As the deterministic
MDP M{ϕ} has a finite number of states, and an output function
R{ϕ} dependent only on the current state, it is an instance of a
reward machine [9], [10].

We represent the task environment as an MDP without a re-
ward function using the tupleMX = 〈X,A, TX〉. The cross prod-
uct of MX and M{ϕ} results in an MDP: MSpec = 〈{〈ϕ′〉} ×
X,A, TSpec, R{ϕ}〉. The transition function of M{ϕ} is defined
as follows:

TSpec

(〈〈ϕ′1〉, x1〉, 〈〈ϕ′
2〉, x2〉, a

)
= T{ϕ}

(〈ϕ′
1〉, 〈ϕ′

2〉, f (x2)
)× TX (x1, x2, a) (13)

MSpec is an equivalent reformulation of PUnS as an MDP,
creating the possibility of leveraging recent advances in rein-
forcement learning for PUnS. In Section V, we demonstrate ex-
amples of PUnS trained using off-policy reinforcement learning
algorithms.

C. Counterfactual Updates in a Model-Free Setting

Toro Icarte et al. ([3], [9]) demonstrated that reward machines
allow for off-policy updates for each state in the reward machine.
ConstructingMSpec as a composition ofMX andM{ϕ} results in
the following properties: the reward function is only dependent
upon 〈ϕ〉, the state ofM{ϕ}; the action availability only depends
upon x, the state of MX; and the stochasticity of transitions is
only in TX, as T{ϕ} is deterministic. These properties allow us
to exploit the underlying structure of MSpec in a model-free
learning setting. Let an action a ∈ A from state x1 ∈ X result
in a statex2 ∈ X. AsT{ϕ} is deterministic, we can use this action
update to apply a Q-function update (Equation 4) to all states
described by 〈〈ϕ′〉, x1〉 ∀ 〈ϕ′〉 ∈ {〈ϕ〉}.

V. EVALUATIONS

In this section, we first explore how the choice of criteria repre-
sented by Equations 5, 7, 8, and 9 results in qualitatively different
performance by trained RL agents. Then, we demonstrate how
the MDP compilation can serve to train an agent on a real-world
task involving setting a dinner table with specifications inferred
from human demonstrations, as per Shah et al. [4]. We also
demonstrate the value of counterfactual Q-value updates for
speeding up the agent’s learning curve.

A. Synthetic Examples

The choice of the evaluation criterion impacts the executions
it entails based on the nature of the distribution P (ϕ). Fig. 2
depicts examples of different distribution types. Each figure
is a Venn diagram where each formula ϕi represents a set of
executions that satisfy ϕi. The size of the set represents the
number of execution traces that satisfy the given formula, while

Fig. 2. Comparisons between different types of distributions over specifica-
tions. In each case, the size of the set is proportional to the number of executions
satisfying the specification, and the thickness of the boundary is proportional to
the probability mass assigned to that specification.

Fig. 3. Fig. 3(a) depicts the transition diagram for the example MDP. Fig.s 3(b),
3(c), and 4(a) depict the exploration graph of agents trained with different eval-
uation criteria for distributions with an intersecting set of satisfying executions.

the thickness of the set boundary represents its probability.
Consider the simple discrete environment depicted in Fig. 3(a):
there are five states, with the start state in the center labeled ‘S’
and the four corner states labeled “T0,” “W0,” “W1,” and “W2”.
The agent can act to reach one of the four corner states from any
other state, and that action is labeled according to the node it is
attempting to reach.
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Case 1: Fig. 2(a) represents a distribution where the most
restrictive formula of the three is also the most probable. All
criteria will result in the agent attempting to perform executions
that adhere to the most restrictive specification.

Case 2: Fig. 2(b) represents a distribution where the most
likely formula is the least restrictive. The minimum regret and
maximum coverage rewards will result in the agent producing
executions that satisfyϕ3, the most restrictive formula; however,
using the most likely criteria will only generate executions that
satisfy ϕ1. With the chance-constrained policy, the agent begins
by satisfying ϕ3 and relaxes the satisfactions as risk tolerance
is decreased, eventually satisfying ϕ1 but not necessarily ϕ2 or
ϕ3.

Case 3: Case 3 represents three specifications that share a
common subset but also have subsets that satisfy neither of the
other specifications. Let the scenario specification be {ϕ} =
{G¬T0 ∧ FW0,G¬T0 ∧ FW1,G¬T0 ∧ FW2} with assigned
probabilities to each of 0.4, 0.25, and 0.35, respectively. These
specifications correspond to always avoiding “T0” and visiting
either “W0,” “W1,” or “W2”. For each figure of merit defined in
Section IV-a, the Q-value function was estimated usingγ = 0.95
and an ε-greedy exploration policy. A softmax policy with
temperature parameter 0.02 was used to train the agent, and
the resultant exploration graph of the agent was recorded. The
most likely criterion requires only the first formula in {ϕ} to be
satisfied; thus, the agent will necessarily visit “W0” but may or
may not visit “W1” or “W2,” as depicted in Fig. 3(b). With either
maximum coverage or minimum regret serving as the reward
function, the agent tries to complete executions that satisfy all
three specifications simultaneously. Therefore, each task execu-
tion ends with the agent visiting all three nodes in all possible
orders, as depicted in Fig. 3(c). Finally, in the chance-constrained
setting with risk level δ = 0.3, the automaton compiler drops
the second specification; the resulting task executions always
visit “W0” and “W2” but not necessarily “W1,” as depicted in
Fig. 3(d).

Case 4: Case 4 depicts a distribution where an inter-
secting subset does not exist. Let the scenario specifica-
tions be {ϕ} = {G¬T0 ∧G¬W2 ∧ FW1,G¬T0 ∧G¬W2 ∧
FW1,G¬T0 ∧ FW2}, with probabilities assigned to each of
0.05, 0.15, and 0.8, respectively. The first two formulas corre-
spond to the agent visiting either “W1” or “W0” but not “W2”.
The third specification is satisfied when the agent visits “W2”;
thus, any execution that satisfies the third formula will not satisfy
the first two. The first two formulas also have an intersecting
set of satisfying executions when both “W0” and “W1” are
visited, corresponding to Case 4 from Fig. 2(d). Optimizing for
max coverage will result in the agent satisfying both the first
and the second formula but ignoring the third, as depicted in
Fig. 4(a). However, when using the minimum regret formulation,
the probability of the third specification is higher than the com-
bined probability of the first two formulas; thus, a policy learned
to optimize minimum regret will ignore the first two formulas
and always end an episode by visiting “W2,” as depicted in
Fig. 4(b). The specific examples and exploration graphs for the
agents in each of the scenarios in Fig. 2 and for each reward

Fig. 4. Fig.s 4(a) and 4(b) depict the exploration graph of agents trained
with different evaluation criteria for distributions without an intersecting set
of satisfying executions.

formulation in Section IV-a are provided in the supplemental
materials.

B. Planning With Learned Specifications: Dinner
Table Domain

We also formulated the task of setting a dinner table as an
instance of PUnS, using the dataset and resulting posterior
distributions provided by Shah et al. [4]. This task features
eight dining set pieces that must be organized in a configuration
depicted in Fig. 5(a). In order to successfully complete the
task, the agent must place each of the eight objects in the final
configuration. As the dinner plate, small plate and the bowl were
stacked, they had to be placed in that particular partial order. The
propositionsα comprise eight Boolean variables associated with
whether an object is placed in its correct position. The original
dataset included 71 demonstrations; Bayesian specification in-
ference was used to compute the posterior distributions over LTL
formulas for different training set sizes.

For the purpose of planning, the task environment MDP MX

was simulated. Its state was defined by the truth values of
the eight propositions defined above; thus, it had 256 unique
states. The action space of the robot was the choice of which
object to place next. Once an action was selected, it had an
80% chance of success as per the simulated transitions. For
this scenario, we selected the posterior distribution trained with
30 training demonstrations, as it had the largest uncertainty
in true specification. This distribution P (ϕ) had 25 unique
formulas in its support {ϕ}. As per the expected value of the
intersection over union metric, the belief was 85% similar to
the true specification. The true specification itself was part of
the support, but was only the fourth most likely formula, as per
the distribution. The deterministic MDP M{ϕ} compiled from
P (ϕ) had 3,025 distinct states; thus, the cross-product of M{ϕ}
and MX yielded MSpec with 774,400 unique states and the same
action space as MX. We chose the minimum regret criteria to
construct the reward function, and trained two learning agents
using Q-learning with an ε-greedy policy (ε = 0.3): one with and
one without off-policy updates. We evaluated the agent at the end
of every training episode using an agent initialized with softmax
policy (the temperature parameter was set to 0.01). The agent
was allowed to execute 50 test episodes, and the terminal value
of the reward function was recorded for each; this was replicated
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Fig. 5. Fig. 5(a) depicts the desired final configuration of objects. Fig. 5(b) depicts the median terminal rewards and the 25th and 75th quartiles. Fig. 5(c) presents
the UR-10 arm performing the table-setting task.

TABLE I
A SUMMARY OF THE EXPERIMENTS ON THE PHYSICAL ROBOT AND SIMULATED EXECUTIONS FOR FOUR DIFFERENT REWARD COMPILATIONS. THE DIFFERENCES

IN THE NUMBER OF UNIQUE ORDERINGS RECORDED AND THE CONSTRAINT VIOLATIONS DEMONSTRATES THE RISK-CREATIVITY TRADE-OFF INHERENT TO PUNS

10 times for each agent. All evaluations were conducted on
a desktop with i7-7700 K and 16 GB of RAM. Our code is
included in the supplementary materials, and is adapted from
LPOPL [9].1

The statistics of the learning curve are depicted in Fig. 5(b).
The solid line represents the median value of terminal reward
across evaluations collected from all training runs. The error
bounds indicate the 75th and 25th percentile. The maximum
value of the terminal reward is 1 when all formulas in the
support {ϕ} are satisfied, and the minimum value is −1 when
all formulas are not satisfied. The learning curves indicate that
the agent that performed Q-value updates for all states of M{ϕ}
learned faster and had less variability in its task performance
across training runs compared with the one that did not perform
counterfactual updates. This provides additional empirical evi-
dence to suggest that off-policy updates to each reward machine
state improve the sample complexity as observed by Toro Icarte
et al. ([3], [9]).

We implemented the learned policy with predesigned mo-
tion primitives on a UR-10 robotic arm. We observed during
evaluation runs that the robot never attempted to violate any
temporal ordering constraint. The stochastic policy also made
it robust to some environment disturbances: for example, if one
of the objects was occluded, the robot finished placing the other
objects before waiting for the occluded object to become visible
again.2

1https://bitbucket.org/RToroIcarte/lpopl
2example executions can be viewed at https://youtu.be/_Ugr8d_lHtw

Next to examine the trade-off between creativity of perform-
ing the task and risk aversion, we repeated the training and testing
with the M{ϕ} compiled with the most likely and the chance
constrained criteria with δ = {0.1, 0.3}. For each of the trained
agents, we recorderd 20 physical executions by deploying the
policy on the robot and we also ran 20000 simulated test episodes
for each instance of the PUnS MDP MSpec. During the simu-
lated and physical test runs, we recorded the number of unique
placement sequences and the number of specification violations.
The results are tabulated in Table I.

Assuming that the dinner plate, the small plate and the bowl
must be placed in that partial order, there are 6720 unique valid
orderings for placing the eight objects. The policies trained as per
min regret and both the chance constrained criteria generated 20
unique orderings in the physical test executions. The simulated
tests reveal that the policy trained in accordance with minimum
regret criterion executes the task with fewer unique orders than
the policy trained with both the chance constrained criteria. Both
the physical executions and the simulations reveal that the policy
trained with the most likely criterion performs the task with
many constraint violations because the most likely formula does
not include an ordering constraint existing in the ground truth
specification. This demonstrates a three-way tradeoff between
computational complexity in terms of the additional states to
consider while planning, the creativity displayed by the policy
in terms of the unique executions discovered and the risk of
specification violation. The min regret policy is the most risk
averse but also the least creative while the chance constrained
policies demonstrate a higher creativity but with more constraint
violations.
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VI. CONCLUSIONS

In this work, we formally define the problem of planning with
uncertain specifications (PUnS), where the task specification
is provided as a belief over LTL formulas. We propose four
evaluation criteria that define what it means to satisfy a belief
over logical formulas, and discuss the type of task executions that
arise from the various choices. We also present a methodology
for compiling PUnS as an equivalent MDP using LTL compi-
lation tools adapted to multiple formulas. We also demonstrate
that MDP reformulation of PUnS can be solved using off-policy
algorithms with counterfactual updates for a synthetic example
and a real-world task. Although we restricted the scope of
this letter to discrete task environment MDPs, this technique
is extensible to continuous state and action spaces; we plan to
explore this possibility in future work.
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