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Set-Based State Estimation With Probabilistic
Consistency Guarantee Under Epistemic Uncertainty
Shen Li , Theodoros Stouraitis , Michael Gienger , Member, IEEE, Sethu Vijayakumar , and Julie A. Shah

Abstract—Consistent state estimation is challenging, especially
under the epistemic uncertainties arising from learned (nonlinear)
dynamic and observation models. In this work, we propose a set-
based estimation algorithm, named Gaussian Process-Zonotopic
Kalman Filter (GP-ZKF), that produces zonotopic state estimates
while respecting both the epistemic uncertainties in the learned
models and aleatoric uncertainties. Our method guarantees prob-
abilistic consistency, in the sense that the true states are bounded by
sets (zonotopes) across all time steps, with high probability. We for-
mally relate GP-ZKF with the corresponding stochastic approach,
GP-EKF, in the case of learned (nonlinear) models. In particular,
when linearization errors and aleatoric uncertainties are omitted
and epistemic uncertainties are simplified, GP-ZKF reduces to
GP-EKF. We empirically demonstrate our method’s efficacy in
both a simulated pendulum domain and a real-world robot-assisted
dressing domain, where GP-ZKF produced more consistent and
less conservative set-based estimates than all baseline stochastic
methods.

Index Terms—State estimation, nonlinear filtering,
robust/adaptive control, physical human-robot interaction.

I. INTRODUCTION

S TATE estimation is critical for robot decision making, espe-
cially during human-robot interactive tasks, where physical

states can be partially observed due to occlusions [1] and latent
mental states can influence the interaction [2], [3]. For a robot to
safely interact with a human, such states are typically estimated
based on models [4]. Due to the complexity in model specifica-
tion, human behavior and observation models are usually learned
from data [5]. These learned models typically include errors,
and any process has stochastic noise; the former is described as
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Fig. 1. In a robot-assisted dressing scenario, we deployed our set-based
estimator—GP-ZKF—to estimate the visually occluded human elbow posi-
tion [1]. With human dynamic and observation models learned via Gaussian
Processes, GP-ZKF constructs zonotopic state estimates (illustrated with the
green box) based on the force measurements at the robot end effector. By
handling the epistemic uncertainties in the learned models, GP-ZKF guarantees
probabilistic consistency—i.e., the true human elbow positions are bounded by
the zonotopes across all time steps, with high probability.

“epistemic uncertainty,” and the latter as “aleatoric uncertainty,”
both of which present critical challenges for estimation algo-
rithms. For example, in a robot-assisted dressing scenario (see
Fig. 1), the epistemic uncertainty could blind the robot, resulting
in overconfidence in an erroneous human state and rendering
the robot’s behavior “aggressive” and unsafe. To address this
challenge, we developed a set-based estimation algorithm that
is able to conservatively respect these uncertainties.

We focus on the problem of consistency in state estimation
from the view of epistemic uncertainty introduced by learned
models. In prior literature, consistency has been analyzed within
two paradigms: stochastic paradigm and set-based paradigm.
For stochastic methods, such as the Extended Kalman Filter
(EKF), a consistent estimate is defined as an unbiased point
estimate together with a covariance matching the actual estima-
tion error [6]. In the field of SLAM, the inconsistency issue of
EKF-based approaches, such as GP-EKF [7], has been broadly
investigated from the views of linearization errors [8], [9] and
state unobservability [10], [11]. On the other hand, set-based
methods construct sets, as state estimates, where consistency
can be interpreted as the sets containing the true states [12]—i.e.,
bounded estimation error. For known models, where epistemic
uncertainty can be omitted, set-based methods can produce
estimates with guaranteed consistency under aleatoric uncer-
tainty [12], [13]. In contrast, we consider settings in which
nonlinear models are learned; in such circumstances, uncertainty
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arises from both the learning errors (epistemic) and noises
(aleatoric).

We developed Gaussian Process-Zonotopic Kalman Filter
(GP-ZKF), a set-based estimation algorithm with a probabilistic
consistency guarantee under learned (dynamic and observation)
models. GP-ZKF learns both nonlinear models via Gaussian
Processes (GP) and leverages GP’s confidence intervals [14]
to calibrate the epistemic uncertainties in both models. This
extends prior work [15] that assumed bounded epistemic un-
certainties in the linear parameter-varying enclosures of the
nonlinear models. Similar to set-based estimators [12], [13],
but specifically for scenarios with learned models, our approach
recursively produces set-based estimates that are represented
as zonotopes (a special type of polytope). These zonotopes are
designed to respect both epistemic and aleatoric uncertainties
and guaranteed to contain the true states across all times steps,
with high probability, rendering GP-ZKF consistent when both
nonlinear models are learned.

We formally relate our set-based approach—GP-ZKF—
with the corresponding stochastic approach—GP-EKF [7]—
and prove that GP-ZKF reduces to GP-EKF if GP-ZKF omits
linearization errors and aleatoric, and simplifies epistemic un-
certainties. This theoretical connection under nonlinear and
learned models extends prior work [16] in relating set-based
with stochastic paradigms under linear and known models.

In this paper, we make the following contributions:
1) We propose GP-ZKF, a set-based state estimator with a

probabilistic consistency guarantee under epistemic and
aleatoric uncertainties, in the case where both dynamic
and observation models are nonlinear and learned.

2) We formally relate GP-ZKF with its stochastic counter-
part, GP-EKF [7], under nonlinear and learned models.

We evaluated GP-ZKF in a simulated pendulum domain and a
real-world robot-assisted dressing domain; our results show that
GP-ZKF provides not only more consistent, but less conservative
set-based estimates than the stochastic baselines (GP-EKF, GP-
UKF, and GP-PF [7]). To the best of our knowledge, ours is the
first work with a probabilistic consistency guarantee for state
estimation with learned models.

In Section II, we provide the background, in Section III we
present the system formulation, and in Section IV we formally
define probabilistic consistency—our focal point for this work.
We present our method in Section V, prove its two main theorems
in Section VI, and empirically evaluate it in Section VII.

II. BACKGROUND

Here, we introduce our nomenclature and briefly provide the
background on intervals, zonotopes, Gaussian Process (GP), and
a high-probability bound for Gaussian noise.

Nomenclature: Uppercase symbols denote sets, bold up-
per case symbols denote matrices, lowercase symbols denote
scalars, and bold lowercase symbols denote vectors. Subscripts
denote the time and dimension: e.g., xt,j , for example, is
the jth dimension of a vector, x, at time t. Superscripts denote
the function a variable is related to—e.g., μg is the mean of the
function g(·). The Minkowski sum,

⊕
, between two sets,X and

Y , is defined as X
⊕
Y := {x+ y : x ∈ X,y ∈ Y }.

A. Intervals and Zonotopes

An interval [a, b] is defined as {x : a ≤ x ≤ b}. A box ⊂ Rn

is an interval vector, ([a1, b1], . . . , [an, bn])T . A zero-centered
box with radius r ∈ Rn is defined as [0± r] ⊂ Rn.

Zonotopes are convex polytopes that are centrally symmet-
ric [17]. A set Z ∈ Rn is a zonotope if there exists (GZ , cZ) ∈
Rn×nξ × Rn, such that Z = {cZ +GZξ : ξ ∈ Rnξ , ‖ξ‖∞ ≤
1}. Here, cZ is the center, each column ofGZ is a generator, and
ξ contains all generator variables. In this work, we let (Z)c refer
to the center, cZ , and let (Z)G refer to the generators, GZ . We
compactly denote Z = {GZ , cZ}. Zonotopes are closed under
affine transformations and Minkowski sums, both of which can
be computed exactly. Formally,b

⊕
AZ = {AGZ ,b+AcZ}

and Z1

⊕
Z2 = {[GZ1

GZ2
], cZ1

+ cZ2
}. For details about

intervals and zonotopes, please refer to [12], [13], [18].

B. Gaussian Process and Confidence Intervals

In this work, unknown functions are learned via GPs. First,
for any unknown function ψ(x) : Rnx → Rny , we assume that
along all dimensions, j ∈ J with J = {1, . . . , ny}, the func-
tion outputs, ψj(·), are independent of each other. Then, we
equivalently reformulate the multi-output function, ψ(·), us-
ing a single-output surrogate function, ψ′(·) [14]. We define
ψ′(·) : Rnx × J → R, where for each dimension j, we have
ψ′(x, j) = ψj(x); this allows us to apply the standard definition
of GP with a scalar output and formulate confidence intervals.

We use a GP, denoted by GP(mψ, kψ), to learn ψ′(·), where
the prior mean function, μψ(·), is set to 0. We assume that
the given training data points are corrupted by i.i.d. Gaussian
noise υ ∈ Rny . Formally, for each dimension j, the noise
υj ∼ �(0, λ2

υ), where λυ ∈ R. By conditioning the GP on n
data points, we obtain that, for each j, a posterior mean function,
μψn,j(·), and a posterior variance function, (σψn,j)

2(·).
This work assumes that the true function, ψ′(·), belongs to

the reproducing kernel Hilbert space (RKHS) associated with
the kernel, kψ . The smoothness of ψ′(·) can be measured via
its RKHS norm, denoted by ‖ψ′‖kψ [14]; then, the confidence
intervals for the function outputs of ψ′(·)—or, equivalently, of
ψ(·)—can be formulated as follows:

Lemma 1 (Lemma 1 in [19]): Let δψ ∈ (0, 1). Fixψ in RKHS
with ‖ψ′‖kψ ≤ Bψ. Assume that each dimension of the data of
ψ′(·) is corrupted by i.i.d. Gaussian noise υj ∼ �(0, λ2

υ). Let

βψn = Bψ +
√

2(γn·ny + log(1/δψ)). Then, with probability at

least (1− δψ), jointly for all n ∈ N, j = 1, . . . , ny , x ∈ Rnx ,
we have that |μψn,j(x)− ψj(x)| ≤ βψn · σψn,j(x).

This lemma states that with high probability, jointly for each
dimension j, the function output of ψj(·) is bounded by a
confidence interval centered at the posterior mean prediction
μψn,j . The scaling, βψn , depends upon γn·ny , the information
capacity with n · ny data points for ψ′(·), which can be bounded
when the domain of ψ′(·) is compact [14], [20].

C. Gaussian Noise Bound

We consider i.i.d. Gaussian noise, denoted by υt ∈ Rny , for
t = 1, . . . , T , where T ∈ N denotes a finite time horizon. With
high probability, jointly throughout all time steps, noise can be
bounded by a box, ⊂ Rny . Formally:
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Lemma 2: Let vectors υ1, . . . ,υT ∈ Rny , such that for
each time t = 1, . . . , T and dimension j = 1, . . . , ny , the noise
υt,j ∼ �(0, λ2

υ), where λυ ∈ R. Then, with probability at least
(1− δυ), where δυ ∈ (0, 1), jointly for all t = 1, . . . , T , we have
that υt ∈ [0±√

2λυ
√

ln(T · ny/δυ)]ny ⊂ Rny .
Proof: The proof is similar to those for Lemma 5.1 in [20]

and Lemma 4 in [21]. For each time t = 1, . . . , T and dimension
j = 1, . . . , ny , we bound υt,j by applying the Gaussian error
function with a probability budget, δυ/(T · ny); we then obtain
the result via a union bound over all t and j. �

III. SYSTEM FORMULATION

We consider a discrete-time dynamical system with finite-
horizon T ∈ N, nonlinear dynamics and observation functions,
and additive noises. Formally, for t = 1, . . . , T , the system can
be described as follows:

xt = d(xt−1,ut−1,wt−1)

= f(xt−1,ut−1) + g(xt−1,ut−1) +wt−1 (1)

yt = o(xt,ut,vt) = h(xt,ut) + vt (2)

Here, for all t = 0, . . . , T , xt ∈ Rnx , ut ∈ � ⊂ Rnu , yt ∈
Rny , wt ∈ Rnx , and vt ∈ Rny denote the system state, control,
measurement, process noise, and measurement noise, respec-
tively. We assume that the domain � is compact, and each
element of wt and vt are i.i.d. Gaussian. Formally, for each
dimension j, we have wt,j ∼ �(0, λ2

w) and vt,j ∼ �(0, λ2
v),

where λw, λv ∈ R. Here, wt+1 and vt correspond to υt in
Section II-B. The function f(·) denotes the prior known dynamic
model, which can be a parametric physics model. The functions
g(·) and h(·) denote the unknown functions to be learned via
GP, and correspond to ψ(·) in Section II-B.

Remark 1: By applying Lemma 2, we construct boxes, de-
noted by W ⊂ Rnx and V ⊂ Rny , to bound noises w and
v, respectively. Formally, given δw ∈ (0, 1), with probability
at least (1− δw), jointly for all t = 1, . . . , T , we have that
wt−1 ∈W . Given δv ∈ (0, 1), with probability at least (1− δv),
jointly for all t = 1, . . . , T , we have that vt ∈ V .

IV. PROBLEM DEFINITION

Our goal is to develop a set-based state estimator that can
produce consistent estimates. Let X̂t ⊂ Rnx denote a set-based
state estimate produced by our algorithm at time t. By as-
suming that the controls are given, the estimation process, at
time t = 1, . . . , T can be represented as a recursive function,
X̂t = E(X̂t−1,ut−1,ut,yt).

When the dynamic and observation models, d(·) and o(·)
(respectively), are known, prior arts in set-based state estima-
tion [12], [13], [22] have achieved strict consistency guarantees.
In contrast, we focus on a scenario where both d(·) and o(·)
are learned with a limited amount of data; hence, we relax
the strict consistency and focus on probabilistic consistency,
or δ-consistency, defined as follows:

Definition 1 (δ-consistency): Given δ ∈ (0, 1); an initial set-
based estimate, X̂0 ⊂ Rnx such that x0 ∈ X̂0; a sequence
of controls, {ut}Tt=0 ⊂ �; and a sequence of measurements,
{yt}Tt=1 ⊂ Rny ; Then, a state estimator is δ-consistent if the
sequence of estimates, {X̂t}Tt=1, computed via E, satisfies:

Pr[ ∀t = 1 . . . T : xt ∈ X̂t ] ≥ 1− δ

This definition states that δ-consistent estimators are able to
guarantee that with high probability, jointly for each time step
within a finite time horizon, the set-based estimate contains the
true state. Note that: (1) Def. 1 implies that the high-probability
consistency guarantee holds jointly throughout the finite time
horizon, rather than per time-step in the form of ∀t = 1 . . . T :

Pr[xt ∈ X̂t] ≥ 1− δ [23]. (2) Def. 1 indicates a filtering (rather
than smoothing) problem, as future measurements are never used
to estimate past or current states.

Problem Statement: Design a set-based estimator that guar-
antees δ-consistency under the epistemic uncertainties in the
learned models, g(·) and h(·), and the aleatoric uncertainties
in the noises, w and v.

V. METHOD

Our recursive set-based estimator, GP-ZKF, shown in Fig. 2,
follows the algorithmic structure of Kalman filter and set-based
estimators [12], [24]. We choose zonotopes to represent the set-
based estimates due to their computational advantages in affine
transformation and Minkowski sum (see Section II-A).

At time step t = 1, . . . , T , GP-ZKF computes a new zono-
topic estimate, X̂t ⊂ Rnx in three phases: 1) Prediction:
Given ut−1 ∈ � and X̂t−1 ⊂ Rnx that contains xt−1 (for-
mally, X̂t−1 
 xt−1), GP-ZKF constructs a dynamics-consistent
zonotope, X̄t ⊂ Rnx , to bound the output of the dynamics,
d(·), with high probability. 2) Measurement: Given ut ∈ �,
X̄t and a new measurement, yt ∈ Rny , GP-ZKF constructs
a measurement-consistent polytope, X̄yt ⊂ Rnx , that contains
all states consistent with yt, with high probability. We choose
polytopes to represent the potentially asymmetric set, X̄yt . 3)
Correction: GP-ZKF constructs the new zonotopic estimate,
X̂t, via the intersection X̄t ∩ X̄yt .

A. Phase 1: Prediction

In the prediction phase, given ut−1 and X̂t−1 
 xt−1, GP-
ZKF constructs a dynamics-consistent zonotope, X̄t, to bound
the outputs of d(·), with high probability. As defined in (1), d(·)
is decomposed into three components: a known function, f(·);
an unknown but to-be-learned function, g(·); and a noise, w. In
this section, we separately formulate bounds for each component
and then integrate them into X̂t−1 to bound d(·).

1) Bounding the Known Function: Bounding arbitrary func-
tions is nontrivial. In this work, we focus on smooth functions
by making the following assumption:

Assumption 1: i) f(·) is twice continuously differentiable; ii)
f(·) is Lf -Lipschitz continuous with respect to the 2-norm; and
iii) ‖f(x0,u)− x0‖2 ≤ Bf for each x0 ∈ X̂0,u ∈ �.

In this section, we use Assumption 1(i) to bound the outputs
of f(·); we will incorporate Assumption 1(ii, iii) (based on
Assumption 3 in [21]) in the following section (Section V-A2).

Assumption 1(i) allows us to directly apply reachability
analysis [18] to bound the outputs of f(·), given ut−1 and
X̂t−1 
 xt−1. In particular, we first linearize f(·) around a refer-
ence point x̄t−1 ∈ Rnx , which is chosen to be the center of X̂t−1.
The linearized function f̄(xt−1,ut−1) = f(x̄t−1,ut−1) + Jfx ·
(xt−1 − x̄t−1), where Jfx is the Jacobian of f(·) with respect to
xt−1, evaluated at (x̄t−1,ut−1). Given ut−1 and X̂t−1 
 xt−1,
the linearization error can be bounded by a zero-centered box
that ⊂ Rnx (see Prop. 3.7 [18]). Formally, for all xt−1 ∈ X̂t−1,
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Fig. 2. A flowchart illustrating the three phases of the set-based estimator, GP-ZKF, at time t = 1, . . . , T : (1) Prediction: given the previous zonotopic estimate,
X̂t−1, and the control, ut−1 (omitted in the figure), GP-ZKF produces a dynamics-consistent zonotope, X̄t. (2) Measurement: given X̄t, the new measurement,
yt, and the control, ut (omitted in the figure), GP-ZKF produces a measurement-consistent polytope, X̄yt . (3) Correction: GP-ZKF computes the new zonotopic
estimate, X̂t, via X̄t ∩ X̄yt . In the prediction phase, the dynamics contains the known function, f(·); the learned function, g(·); and the process noise, w (Eq. (1)).
In the measurement phase, the observation function contains the learned function, h(·), and the measurement noise, v (Eq. (2)).

ut−1 ∈ �, we have:

f(xt−1,ut−1)−f̄(xt−1,ut−1)∈ Rf (X̂t−1,ut−1) ⊂ Rnx (3)

Here,Rf (·) denotes the function used to compute the box that
bounds the error based on X̂t−1 and ut−1.

2) Bounding the Unknown Function: The unknown function
g(·) is learned via a GP (see Section II-B). In this section, we for-
mulate a high-probability bound for the output of g(xt−1,ut−1),
given ut−1 and X̂t−1 
 xt−1, in the following five steps: i) We
state certain regularization assumptions about g(·); ii) show that
the state space is compact, with high probability; iii) utilize this
compactness to derive a bound for the GP posterior mean, μg(·);
iv) present a bound for the GP posterior standard deviation,
σg(·); and (v) integrate both bounds of μg(·) and σg(·) into the
GP confidence intervals, as introduced in Lemma 1, to bound
the output of g(·).

(i) Regularization assumptions: We denote the kernel for g(·)
as kg and the single-output surrogate function as g′(·) (see
Section II-B), and assume the following:

Assumption 2: i) kg is 2-times continuously differentiable
(Def. 4.35 in [25]), ii) kg is bounded by ‖kg‖∞ (4.15 in [25]),
iii) kg has bounded derivatives (Assumption 4 in [21]), and (iv)
‖g′‖kg ≤ Bg (see Section II-B).

This assumption states that kg(·, ·) and g(·) are smooth and
bounded; common smooth kernels, such as square exponential
and rational quadratic kernels, satisfy this assumption. Assump-
tion 2 (i, iii, iv) implies that g(·) is Lg-Lipschitz continuous
with respect to the 2-norm (Cor. 2 in [21]).

ii) Compact state space: The infinite support of the process
noise, w, makes the state space of our system unbounded.
Taking a step back, the following lemma states that, with high
probability, the reachable state space is compact during the
estimation processes:

Lemma 3: With Asm. 1 (ii, iii), Asm. 2, and our Gaussian
Asm. on w (Section III), and given initial set X̂0 
 x0, then
with probability at least (1− δw), jointly for all t = 0, . . . , T ,
we have that xt ∈ �, where � is a box ⊂ Rnx (compact) that
depends upon X̂0, T , λw, δw, Lf , Lg , Bf , Bg, ‖kg‖∞, nx.

Lemma 3 can be proven by integrating X̂0 and our noise
bound, W (Remark 1 in Section III), into Lemma 44 in [21].
The intuition behind the proof is that our Assumption 1 (ii, iii),
Assumption 2, and the Gaussian nature of w (with a probability
budget δw) “prevent” f(·), g(·), and w (respectively) from
deviating the state infinitely far away from X̂0.

iii) Bound posterior mean: Next, we derive a bound for the
posterior mean, μg(·). We first linearize μg(·) around x̄t−1,

which is chosen to be the center of X̂t−1. The linearized
function is μ̄g(xt−1,ut−1) = μg(x̄t−1,ut−1) + J

μg
x · (xt−1 −

x̄t−1), whereJμgx is the Jacobian ofμg . Lemma 3 implies that the
domain of μg(·) during the estimation process is compact, with
high probability. Together with Assumption 2 (i), we obtain that,
with high probability, for each j = 1, . . . , nx, the mean μgj is
twice continuously differentiable with Lg∇μ-Lipschitz gradient.
We then follow the steps in V(A)2) in [14] to derive a bound for
the linearization error, as follows:

|µg
j (xt−1,ut−1)−µ̄g

j (xt−1,ut−1)|≤ 1

2
Lg
∇µ ·‖xt−1−x̄t−1‖22 (4)

Here, with probability at least (1− δw), this bound holds uni-
formly for all t = 1, . . . , T , j = 1, . . . , nx, xt−1 ∈ �, ut−1 ∈�, where the probability (1− δw) is derived from Lemma 3.

iv) Bound standard deviation: We approximate the standard
deviation, σg(xt−1,ut−1), using σg(x̄t−1,ut−1). Assumption 2
(i, ii, iii) allows the use of (21,22 in [26]) to bound the ap-
proximation error. Formally, with Lgσ ∈ R, we have for all
t = 1, . . . , T , j = 1, . . . , nx, xt−1 ∈ Rnx , ut−1 ∈ �:

|σgj (xt−1,ut−1)−σgj (x̄t−1,ut−1)|≤ Lgσ ·‖xt−1−x̄t−1‖1/22 (5)

v) Bound combination: Assumption 2 (iv) allows the use of
Lemma 1 to construct confidence intervals for g(·) with δg ∈
(0, 1). Via a union bound, we combine the confidence intervals
and our bounds for the mean and standard deviation to bound
the error, |g(·)− μ̄g(·)|, as follows:

|gj(xt−1,ut−1)− μ̄gj (xt−1,ut−1)|

≤ 1

2
Lg∇μ · ε2

︸ ︷︷ ︸
Linearization
error of μgj (·)

+ βg · σgj (x̄t−1,ut−1)+β
g · Lgσ · ε1/2

︸ ︷︷ ︸
Epistemicuncertainty

⊕
Approx. error of σg

j (·)

(6)

Here, ε = ‖X̂t−1 − x̄t−1‖2 is the norm of the translated
zonotope. (We provide the derivation in the Appendix.) Let
Rg(X̂t−1,ut−1) be a zero-centered box ⊂ Rnx , whose ra-
dius along each dimension j = 1, . . . , nx is the RHS of (6).
Thus, with probability at least (1− δg − δw), jointly for all
t = 1, . . . , T , X̂t−1 ⊂ �,ut−1 ∈ �,xt−1 ∈ X̂t−1, we have that

g(xt−1,ut−1)− μ̄g(xt−1,ut−1) ∈ Rg(X̂t−1,ut−1) (7)

3) The Prediction Phase: We define a linear func-
tion, d̄(·), by summing the linearized f(·) and μg(·) as
d̄(xt−1,ut−1) = f̄(xt−1,ut−1) + μ̄g(xt−1,ut−1). We define a
box,Rd(X̂t−1,ut−1) ⊂ Rnx , by Minkowski summing the error
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bounds of f(·) (3), g(·) (7), and w (Remark 1 in Section III).
Then, with probability at least (1− δg − δw), the error between
d(·) and d̄(·) can be bounded by Rd(·) as follows:

d(xt−1,ut−1,wt−1)− d̄(xt−1,ut−1) ∈ Rd(X̂t−1,ut−1)

:=Rf (X̂t−1,ut−1)︸ ︷︷ ︸
Linearization err. of f(·)

⊕
Rg(X̂t−1,ut−1)︸ ︷︷ ︸

Epistemic
⊕

Lin. err. of μg(·)⊕
Approx. err. of σg(·)

⊕
W︸︷︷︸

Aleatoric

(8)

Given that d̄ is a linear function, ut−1 is known, and xt−1 ∈
X̂t−1, the output d̄(xt−1,ut−1) is bounded by a zonotope ob-
tained by linearly transforming X̂t−1. Then, by Minkowski-
summing this transformed zonotope and Rd(X̂t−1,ut−1), we
obtain another zonotope, denoted by X̄t, that bounds the output
d(xt−1,ut−1,wt−1) (see Section II-A). Let D(X̂t−1,ut−1) de-
note the function to compute X̄t; we now summarize the steps
described throughout this section in the following lemma:

Lemma 4: Let δg, δw ∈ (0, 1). For all n ∈ N, we choose βgn
according to Lemma 1. Given an initial set X̂n,0 
 xn,0, then,
with probability at least (1− δg − δw), the following holds
jointly for all n ∈ N, t = 1, . . . , T :

(i) d(xn,t−1,un,t−1,wn,t−1) ∈ X̄n,t = D(X̂n,t−1,un,t−1),
for all X̂n,t−1 ⊂ �, xn,t−1 ∈ X̂n,t−1, un,t−1 ∈ �,
where wn,t−1 is the process noise as assumed in Section III.

(ii) xn,t ∈ �, xn,0 ∈ �.

Proof: The noise bound, W (Remark 1), and Lemma 3 hold
jointly, with probability at least (1− δw). Then, by applying a
union bound to combine the above result with the confidence
intervals of g(·) (Lemma 1), we arrive at the bound, X̄n,t. �

Hence, the prediction phase computes the dynamic-consistent
zonotope, X̄t = D(X̂t−1,ut−1) ⊂ Rnx , which bounds the out-
put of the dynamic function, d(·) (Lemma 4).

B. Phase 2: Measurement

In the measurement phase, given X̄t from Lemma 4 and ut,
GP-ZKF constructs a measurement-consistent polytope [24],
X̄yt , to bound all possible states consistent with the new mea-
surement, yt, with high probability.

The unknown function h(·) is learned via GP (see Section II-
B). We denote the single-output surrogate function by h′(·), and
the kernel by kh. Similar to Assumption 2 about kg and g(·), we
make the following assumption about kh and h(·):

Assumption 3: (i) kh is 2-times continuously differentiable
(Def. 4.35 in [25]), (ii) kh is bounded by ‖kh‖∞ (4.15 in [25]),
(iii) kh has bounded derivatives (Assumption 4 in [21]), and (iv)
‖h′‖kh ≤ Bh (see Section II-B).

To bound h(·), we follow the same steps described in Sec-
tion V-A2 to bound g(·). Bound posterior mean: We linearize
μh(·) around x̄t = the center of X̄t, and obtain μ̄h(xt,ut) =
μh(x̄t,ut) + Jμhx · (xt − x̄t). Lemma 4 (ii) implies the com-
pactness of the domain of μh(·) within the estimation process,
which leads to a linearization error bound (similar to (4)).
Bound standard deviation: With Assumption 3, we derive a
bound for σh(·) (similar to (5)). Bound combination: Given
δh ∈ (0, 1), Lemma 1 allows us to construct confidence intervals
for h(·). Via a union bound, we determine that the confidence in-
tervals and noise boundvt ∈ V (see Remark 1) jointly hold with
probability at least (1− δh − δv). Then, similar to Rg in (7),

we obtain a box, Rh(X̄t,ut) ⊂ Rny . Thus, with probability at
least (1− δg − δw)(1− δh − δv), jointly for all t = 1, . . . , T ,
X̄t ⊂ �, ut ∈ �, xt ∈ X̄t, we have that

h(xt,ut)− μ̄h(xt,ut) ∈ Rh(X̄t,ut) (9)

Here, the product rule, (1− δg − δw)(1− δh − δv), results
from the assumption that noises w and v are independent with
each other (Section III). By expanding μ̄h and then combining
the noise bound V (Remark 1) with (9), we obtain that with
probability at least (1− δg − δw)(1− δh − δv), jointly for all
t = 1, . . . , T , X̄t ⊂ �, ut ∈ �, xt ∈ X̄t, the following holds:

μ̄h(xt,ut)− o(xt,ut,vt)

= μh(x̄t,ut) + Jμhx · (xt − x̄t)− h(xt,ut)− vt

∈ Ro(X̄t,ut) := Rh(X̄t,ut)︸ ︷︷ ︸
Epistemic

⊕
Lin. err. of μh(·)

⊕
Approx. err. of σh(·)

⊕
V︸︷︷︸

Aleatoric

(10)

Given a new measurement, yt = o(xt,ut,vt) ∈ Rny (2), the
measurement-consistent states must satisfy the bound in (10).
Hence, we equivalently represent the bound in (10) as a polytope,
X̄yt ⊂ Rnx , with xt as the variable, as follows:

X̄yt={xt ∈ Rnx :

Jμhx · xt−[yt−µh(x̄t,ut)+Jμhx ·x̄t]∈Ro(X̄t,ut)} (11)

The output of the measurement step is the measurement-
consistent polytope, X̄yt ⊂ Rnx . Let Oinv(X̄t,ut,yt) denote
the function to compute X̄yt , where the superscript inv empha-
sizes that Oinv is the “inverse” of our observation model, o(·).

C. Phase 3: Correction

In the correction phase, the goal is to construct a zonotope
X̂t as the intersection X̄t ∩ X̄yt , where X̄t is formulated in
Lemma 4 and X̄yt is defined in (11). Note that the bound in
(10) requires X̄t ⊂ �; therefore, GP-ZKF instead computes the
intersection X̄t ∩ X̄yt ∩�. This intersection cannot be com-
puted exactly, and hence is outer-approximated by X̂t. The new
zonotope, X̂t, is potentially less conservative than X̄t and X̄yt

in bounding the possible states, as X̂t takes into account both
dynamics and measurements. Formally:

Lemma 5: Let δg, δw, δh, δv ∈ (0, 1). For all ng, nh ∈ N,
we choose βgng , β

h
nh according to Lemma 11. Given an initial

set X̂0 
 x0, then, with probability at least (1− δg − δw)(1−
δh − δv), jointly for all ng, nh ∈ N, t = 1, . . . , T , X̂t−1 ⊂ �,
xt−1 ∈ X̂t−1,ut−1,ut ∈ �, andyt ∈ Rny , we have the follow-
ing:

d(xt−1,ut−1,wt−1) ∈
(
X̄t ∩ X̄yt ∩�) ⊂ X̂t (12)

where wn,t−1 is the process noise as assumed in Section III,
X̄t = D(X̂t−1,ut−1) (Lemma 4), and X̄yt = Oinv(X̄t,ut,yt)
(11).

This lemma states that the true state at time t lies within
the zonotope, X̂t, with high probability. Lemma 5 summarizes
the derivations in Section V-B; it can be proved by directly
combining Lemma 4 and the bound in (10).

1We omit the subscripts ng , nh for every variable in this lemma for clarity.
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TABLE I
THE ESTIMATION RESULTS IN THE SIMULATED PENDULUM DOMAIN

The intersection in (12) is outer-approximated in two steps:
First, GP-ZKF follows Prop. 1 in [24] to obtain a zonotope
denoted by Zt(Λt) and parameterized by the matrix Λt, such
that Zt(Λt) ⊃ (X̄t ∩ X̄yt). The parameter Λt is obtained by
analytically solving a convex program that minimizes the “size”
ofZt(Λt) (see Sec. 6.1 in [12]). Then, GP-ZKF follows the same
procedures to construct X̂t ⊃ (X̄t ∩ X̄yt ∩�).

The essence of the correction step can be represented by the
function E(X̂t−1,ut−1,ut,yt), which conducts the intersec-
tions and outputs the new zonotopic estimate, X̂t.

VI. THEORETICAL GUARANTEES

We present two key theorems about GP-ZKF. First, as both
epistemic and aleatoric uncertainties have been bounded, GP-
ZKF is δ-consistent (Def. 1); second, when both uncertainties
are relaxed, GP-ZKF reduces to GP-EKF [7].

Theorem 1: Given δ ∈ (0, 1), GP-ZKF chooses
δg, δh, δw, δv ∈ (0, 1) such that (1− δg − δw)(1− δh − δv) ≥
(1− δ). For all ng, nh ∈ N, GP-ZKF chooses βgng , β

h
nh

according to Lemma 1. Then, GP-ZKF is δ-consistent.
Proof: Similar to the proof for Cor. 7 in [14], we recursively

apply Lemma 5 from t = 1 toT and obtain with high probability,
jointly for all t = 1, . . . , T , that xt ∈ X̂t. �

GP-EKF [7] is an EKF-based state estimator that learns both
dynamic and observation models via GPs; we see GP-EKF as
the stochastic counterpart to our set-based GP-ZKF. At every
time t = 1, . . . , T , GP-EKF computes the Kalman gain, Kt ∈
Rnx×ny , and outputs a point estimate, μt ∈ Rnx , and a covari-
ance, Σt ∈ Rnx×nx (see Table II in [7]). To draw an analogy
similar to Thm.7 in [16], we define GP-ZKF’s Kalman gain as
the matrix Λt, which parameterizes the intersection X̄t ∩ X̄yt ,
as mentioned at the end of Section V-C. We define GP-ZKF’s
point estimate as the zonotope center, (X̂t)c, and covariance as
(X̂t)G((X̂t)G)

T (the zonotope covariation, as seen in Def. 4
in [16]). Next, we formally demonstrate that GP-ZKF can be
reduced to (the Joseph form of) GP-EKF:

Theorem 2: Assume that GP-ZKF’s set-based estimates are
always inside the state space—i.e., for all t = 1, . . . , T , the
zonotope Zt(Λt) ⊂ �, where Zt(Λt) is defined at the end of

Fig. 3. Zonotopic estimates along a trajectory produced by GP-ZKF under
the Shift None condition. The zonotopic estimates, X̂t (green fill), always
outer-approximate the intersection between the dynamic-consistent zonotope,
X̄t (yellow fill), and the measurement-consistent zonotope, X̄yt (blue outline).
(1) Despite the erroneous point estimates, defined as (X̂t)c (green dots), the
zonotopes, X̂t, still contain the true states (black dots). (2) Even though the
volumes of X̄t may grow rapidly during uncertainty propagation, the volumes
of X̂t shrink when informative measurements are available.

Section V-C. Given the same initial condition, μ0 = (X̂0)c and
K0 = (X̂0)G((X̂0)G)

T , if GP-ZKF: (i) sets the confidence
interval scalings for g(·) andh(·), denoted byβg andβh (respec-
tively), to 1; (ii) omits all noise bounds for w and v by setting
W = ∅ and V = ∅ (Remark 1); and (iii) omits all linearization
errors for f(·), μg , σg, μh, and σh by setting Rf (·) = ∅ (3),
Lg∇μ = 0 (4), Lgσ = 0 (5), Lh∇μ = 0 (Section V-B), and Lhσ = 0
(Section V-B); then, for time t = 1, . . . , T , we have Kt = Λt,
μt = (X̂t)c, and Σt = (X̂t)G((X̂t)G)

T .
Proof: Under the relaxations above, (12) becomes (X̄t ∩

X̄yt ∩�) ⊂ Zt(Λt) = X̂t. And each of the uncertainty bounds,
Rd(·) (8) and Ro(·) (10), only contains one standard deviation.
As introduced at the end of Section V-C, GP-ZKF obtains
X̂t(Λt) by optimizing Λt. With the analytical solution, Λt, we
reach the final conclusion by induction (see the proof of Thm.7
in [16]). �

This theorem states that with certain relaxations, GP-ZKF
could produce the same Kalman gain, point estimate, and co-
variance as GP-EKF. The Kalman gain in GP-ZKF, Λt, weighs
the dynamic-consistent zonotope, X̄t, and the measurement-
consistent polytope, X̄yt , when “mixing” them within the outer-
approximated intersection. In contrast to GP-EKF, Thm. 2
signifies the conservativeness of GP-ZKF in bounding the lin-
earization errors and aleatoric and epistemic uncertainties during
estimation. The conservativeness echoes GP-ZKF’s consistency
guarantee, as stated in Thm. 1.

VII. EXPERIMENT AND RESULT

In Section VI, we theoretically highlight GP-ZKF’s consis-
tency guarantee and its connection with GP-EKF. We also em-
pirically demonstrate GP-ZKF’s improved consistency against
three GP-based stochastic approaches: GP-EKF, GP-UKF, and
GP-PF [7], in both a simulated inverted pendulum domain under
significant epistemic uncertainty and a real-world robot-assisted
dressing domain.
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TABLE II
THE ESTIMATION RESULTS IN THE ROBOT-ASSISTED DRESSING DOMAIN

In both domains, we evaluated all methods using the following
metrics: 1) Avg. root-mean-square error (RMSE) (per dimen-
sion) for the point estimate. GP-ZKF’s point estimate is defined
as the zonotope center, (X̂t)c (see Section VI). 2) Inclusion: the
percentage of time steps during which the true state is “included”
by the set-based estimate, which measures a method’s consis-
tency. Recall that Thm. 2 draws equivalence between GP-ZKF’s
zonotopic estimate and the unscaled covariance from GP-EKF.
In practice, we defined GP-EKF, GP-UKF, and GP-PF’s set-
based estimates as the 95% confidence ellipsoids determined
by the up-scaled covariance matrices (GP-PF’s posteriors were
approximated as Gaussians) such that they can be on par with
GP-ZKF. 3) Avg. radius (per dimension): the radius of the box
that outer-approximates the set-based estimates, which measures
conservativeness. 4) Avg. computation time per time step.

A. Simulated Pendulum Domain

We simulated a discrete-time 2D inverted pendulum con-
trolled by an infinite-horizon linear quadratic regulator. The
state, x = [θ, θ̇]T (angle and angular velocity), and the set-point
correspond to the pendulum standing upright (0◦). The dynam-
ics, d(·), is the closed-loop system, with noise w (λw = 7.16◦).
The observation function, o(·), maps the state to the end effector
position and velocity ∈ R4, with noise v (λv = 8.88◦). The
known dynamics, f(·), is given by the linearized and discretized
system around the set-point.

To evaluate the methods’ consistency under significant epis-
temic uncertainties, we induced distribution shifts between train-
ing and testing. For testing, we ran each method with T = 15
from four uniformly sampled starting points within the testing
region, θ ∈ [π, 2π], with 10 repetitions per starting point. The
training data included four variants: 1) Shift Both: the GPs for
both g(·) and h(·) were trained with a default dataset with nine
rollouts inside the training region, θ ∈ [0, π]. The epistemic
uncertainties in both the dynamic and observation models were
high due to the shift from the training region to the testing region.
2) Shift Dynamics: the GP forh(·)was trained with an additional
dataset whose input locations were uniformly sampled in the
testing region. 3) Shift Observation: the GP for g(·) was trained
with five additional rollouts inside the testing region. 4) Shift
None: g(·) and h(·) were each trained with their own additional
dataset besides the default dataset. Similar to [14], confidence
interval scalings βg and βh are conservative. We specified and

Fig. 4. Keyframes of the robot-assisted dressing task (cloth is omitted). The
simulated robot and human motions were reproduced based on real-world data
(Fig. 1). Each keyframe illustrates a few ground-truth states of the human arm
and the zonotopic estimate of the human elbow position (outer-approximated as
boxes ⊂ R3, visualized in green).

scaled them when more data was available, to reflect their
dependency upon the information capacity, γ.

We present our results in Table I. Due to the nonlinearity of
the dynamic and observation functions, the linearization-based
method (GP-EKF) performed poorly, with very low inclusions
and small radii. GP-UKF (not linearization-based) performed
better, with lower RMSEs, higher inclusions and larger radii.
GP-PF produced large RMSEs, potentially due to the nar-
rowness of GP’s predictive distributions. In contrast, GP-ZKF
achieved the highest amount of inclusions for all conditions;
this empirically validates GP-ZKF’s conservativeness in respect-
ing linearization errors and epistemic and aleatoric uncertain-
ties, which echos GP-ZKF’s probabilistic consistency guarantee
(Thm. 1). Fig. 3 illustrates the zonotopic estimates produced by
GP-ZKF under the Shift None condition. Admittedly, GP-ZKF
is more conservative than the others, resulting in larger radii.
We argue that GP-ZKF’s conservativeness actually scales ap-
propriately with the domain, as we will next demonstrate its low
conservativeness in the dressing domain.

B. Robot-Assisted Dressing Domain

A robot arm was controlled to dress a long-sleeved jacket
onto a human arm (Fig. 1). We evaluated all methods offline to
estimate the visually occluded positions of human elbow [1].

During data collection, the human naturally moved his arm,
the configuration of which was tracked by the Xsens motion
capture system, which does not suffer from visual occlusion.
The robot was controlled to move from the human hand to the
elbow, and then to the shoulder position. The data is composed
of three initial arm conditions: bend, lower, and straight, with
17, 11, and 12 trajectories, respectively.

The state, x ∈ R3, is the human elbow position. The control,
u ∈ R9, contains the positions of the human hand and shoulder,
and the robot end effector. The measurement y ∈ R3 is the
processed force signal, obtained at the robot end effector. We
applied a low-pass filter to the force and converted it to the
approximate position of the center of the cuff via a tether-
inspired parametric model [27]. The known dynamic model is
specified as f(x,u) = x; the variances of the noises, w and v,
are automatically identified within GP regression.

We present the cross-validated results within each initial arm
condition in Table II. Both GP-EKF and GP-UKF achieved
high amount of inclusions that were comparable with GP-ZKF;
however, GP-ZKF’s radii were much smaller, demonstrating
its appropriate conservativeness. Essentially, GP-ZKF provided
consistent set-based estimates without being overly conserva-
tive; Fig. 4 illustrates the zonotopic estimates it produced.
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VIII. CONCLUSION AND FUTURE WORK

This work proposes a set-based estimator, GP-ZKF, that is
able to produce zonotopic estimates based on learned dynamic
and observation models. Theoretically, GP-ZKF guarantees
probabilistic consistency. In addition, the stochastic approach,
GP-EKF, can be seen as a special case of our set-based method,
GP-ZKF—i.e., where linearization errors and aleatoric uncer-
tainties are omitted and epistemic uncertainties are simplified.
Empirically, GP-ZKF outperformed the stochastic baselines
(GP-EKF, GP-UKF, and GP-PF [7]) in both a simulated pen-
dulum and real-world dressing domain. Future work will focus
on combining our approach with control methods [28], [29], as
well as richer and more computationally scalable models for
force-based estimation.

APPENDIX

We combine the confidence intervals for g(·) (Lemma 1) with
the bounds forμg (4) andσg (5) to bound the error |gj(·)− μ̄gj (·)|
for each j = 1, . . . , nx as follows:

|gj(xt−1,ut−1)− μ̄gj (xt−1,ut−1)|
≤ |μgj (xt−1,ut−1)− μ̄gj (xt−1,ut−1)|

+ |gj(xt−1,ut−1)− μgj (xt−1,ut−1)| (b)

≤ 1

2
Lg∇μ · ‖xt−1 − x̄t−1‖22 + βg · σgj (xt−1,ut−1) (c)

≤ 1

2
Lg∇μ · ‖xt−1 − x̄t−1‖22

+ βg · σgj (x̄t−1,ut−1) + βgLgσ · ‖xt−1 − x̄t−1‖1/22 (d)

≤ 1

2
Lg∇μ · ‖X̂t−1 − x̄t−1‖22

+ βg · σgj (x̄t−1,ut−1) + βgLgσ · ‖X̂t−1 − x̄t−1‖1/22 (e)

Here, (b) is obtained via the triangle inequality, and we
achieve (c) by using a union bound to combine the mean’s
error bound (4) and confidence intervals (Lemma 1). Hence,
all inequalities starting at (c) hold with probability at least (1−
δg − δw). (d) is obtained by applying the standard deviation’s
error bound (5); (e) is due to the norm of the translated zonotope
‖X̂t−1 − x̄t−1‖2 := maxxt−1∈X̂t−1

‖xt−1 − x̄t−1‖2 [30].
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