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Abstract: Learning from demonstration (LfD) has succeeded in tasks featuring a
long time horizon. However, when the problem complexity also includes human-
in-the-loop perturbations, state-of-the-art approaches do not guarantee the suc-
cessful reproduction of a task. In this work, we identify the roots of this challenge
as the failure of a learned continuous policy to satisfy the discrete plan implicit
in the demonstration. By utilizing modes (rather than subgoals) as the discrete
abstraction and motion policies with both mode invariance and goal reachability
properties, we prove our learned continuous policy can simulate any discrete plan
specified by a linear temporal logic (LTL) formula. Consequently, an imitator is
robust to both task- and motion-level perturbations and guaranteed to achieve task
success. Project page: https://yanweiw.github.io/tli/
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Figure 1: (a) A successful replay of the scooping task. The robot (b) is robust to motion-level perturbations;
(c) experiences an invariance failure (i.e., drops material) after a task-level perturbation; and (d) re-scoops after
a task-level perturbation, avoiding failure after DS motion policy modulation.

1 Introduction
In prior work, learning from demonstration (LfD) [1, 2] has successfully enabled robots to
accomplish multi-step tasks by segmenting demonstrations (primarily of robot end-effector or
tool trajectories) into sub-tasks/goals [3, 4, 5, 6, 7, 8], phases [9, 10], keyframes [11, 12], or
skills/primitives/options [13, 14, 15, 16]. Most of these abstractions assume reaching subgoals se-
quentially will deliver the desired outcomes; however, successful imitation of many manipulation
tasks with spatial/temporal constraints cannot be reduced to imitation at the motion level unless
the learned motion policy also satisfies these constraints. This becomes highly relevant if we want
robots to not only imitate but also generalize, adapt and be robust to perturbations imposed by hu-
mans, who are in the loop of task learning and execution. LfD techniques that learn stable motion
policies with convergence guarantees (e.g., Dynamic Movement Primitives (DMP) [17], Dynamical
Systems (DS) [18]) are capable of providing such desired properties but only at the motion level.
As shown in Fig. 1 (a-b) a robot can successfully replay a soup-scooping task while being robust
to physical perturbations with a learned DS. Nevertheless, if the spoon orientation is perturbed to a
state where all material is dropped, as seen in Fig. 1 (c), the motion policy will still lead the robot to
the target, unaware of the task-level failure or how to recover from it. To alleviate this, we introduce
an imitation learning approach that is capable of i) reacting to such task-level failures with Linear
Temporal Logic (LTL) specifications, and ii) modulating the learned DS motion policies to avoid
repeating those failures as shown in Fig. 1 (d).

Example We demonstrate that successfully reaching a goal via pure motion-level imitation does
not imply successful task execution. The illustrations in Fig. 2 represent a 2D simplification of the
soup-scooping task, where task success requires a continuous trajectory to simulate a discrete plan
of consecutive transitions through the colored regions. Human demonstrations, shown in Fig. 2 (a),
are employed to learn a DS policy [19], depicted by the streamlines in Fig. 2 (b). The policy is
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Figure 2: Mode abstraction of a 2D soup-scooping task: x1 and x2 denote the spoon’s orientation and distance
to the soup. (a) Task: To move the spoon’s configuration from the white region (spoon without soup) ⇒ yellow
region (spoon in contact with soup) ⇒ pink region (spoon holding soup) ⇒ green region (soup at target).
(Note that transitions (white ⇒ pink) and (white ⇒ green) are not physically realizable.) Black curves denote
successful demonstrations. (b) Learning DS policies [19] over unsegmented data can result in successful task
replay (blue trajectories), but lacks a guarantee due to invalid transitions (red trajectories). (c) Trajectories are
segmented into three colored regions (modes) with orange attractors. (d-f) Learning DSs on segments may still
result in invariance failures (i.e., traveling outside of modes as depicted by red trajectories).

stress-tested by applying external perturbations, displacing the starting states of the policy rollouts.
As shown, only blue trajectories succeed in the task, while the red ones fail due to discrete transi-
tions that are not physically realizable (e.g., white ⇒ pink). As shown in Fig. 2 (c-f), even if the
demonstrations are further segmented by subgoals (and corresponding DS policies are learned), this
issue is not mitigated. While one could treat this problem as covariate shift and solve it by asking a
human for more demonstrations [20], in this work, we frame it as the mismatch between a learned
continuous policy and a discrete task plan specified by the human in terms of a logical formula.
Specifically, the core challenges illustrated by this example are two-fold: 1) subgoals only impose
point constraints that are insufficient to represent the boundary of a discrete abstraction; and 2) the
continuous policy can deviate from a demonstrated discrete plan when perturbed to unseen parts of
the state space, and is incapable of replanning to ensure all discrete transitions are valid.

To address these challenges, our proposed approach employs “modes” as discrete abstractions. We
define a mode as a set of robot and environment configurations that share the same sensor reading
[21, 22]; e.g., in Fig. 2, each colored region is a unique mode, and every mode has a bound-
ary that imposes path constraints on motion policies. Additionally, we use a task automaton as a
receding-horizon controller that replans when a perturbation causes the system to travel outside a
mode boundary and triggers an unexpected sensor change; e.g., detecting a transition from yellow
⇒ white instead of the desired yellow ⇒ pink will result in a new plan: white ⇒ yellow ⇒ pink
⇒ green. In this work, we synthesize a task automaton from a linear temporal logic formula (LTL)
that specifies all valid mode transitions. We denote the problem of learning a policy that respects
these mode transitions from demonstrations as temporal logic imitation (TLI). In contrast to tempo-
ral logic planning (TLP) [23], where the workspace is partitioned into connected convex cells with
known boundaries, we do not know the precise mode boundaries. Consequently, the learned policy
might prematurely exit the same mode repeatedly, causing the task automaton to loop without termi-
nation. To ensure any discrete plan generated by the automaton is feasible for the continuous policy,
the bisimulation criteria [24, 25] must hold for the policy associated with each mode. Specifically,
any continuous motion starting in any mode should stay in the same mode (invariance) until even-
tually reaching the next mode (reachability). The violations of these conditions are referred to as
invariance failures and reachability failures respectively.

Contributions First, we investigate TLP in the setting of LfD and introduce TLI as a novel for-
mulation to address covariate shift by proposing imitation with respect to a mode sequence instead
of a motion sequence. Second, leveraging modes as the discrete abstraction, we prove that a state-
based continuous behavior cloning (BC) policy with a global stability guarantee can be modulated
to simulate any LTL-satisficing discrete plan. Third, we demonstrate that our approach LTL-DS,
adapts to task-level perturbations via an LTL-satisficing automaton’s replanning and recovers from
motion-level perturbations via DS’ stability during a multi-step, non-prehensile manipulation task.

2 Related Works
Temporal Logic Motion Planning LTL is a task specification language widely used in robot mo-
tion planning [26, 27, 28, 23]. Its ease of use and efficient conversion [29] to an automaton have
spurred substantial research into TLP [25, 30, 31], which studies how to plan a continuous trajec-
tory that satisfies an LTL formula. However, TLP typically assumes known workspace partitioning
and boundaries a priori, both of which are unknown in the rarely explored TLI setting. While
a robot can still plan in uncertain environments [32, 33], LfD bypasses the expensive search in
high-dimensional space. Recent works [34, 35] have considered temporal logic formulas as side-
information to demonstrations, but these formulas are treated as additional loss terms or rewards and
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are not guaranteed to be satisfied. The key motivation for using LTL is to generate a reactive discrete
plan, which can also be achieved by a finite state machine [14] or behavior tree [36].
Behavior Cloning We consider a subclass of LfD methods called state-based behavior cloning (BC)
that learns the state-action distribution observed during demonstrations [37]. DAGGER [20], a BC-
variant fixing covariate shift, could reduce the invariance failures depicted in Fig. 2, but requires
online data collection, which our framework avoids with an LTL specification. To satisfy goal
reachability, we employ a DS-based LfD technique [38]. Alternatives to this choice include certified
NN-based methods [39, 40], DMPs [41], partially contracting DS [42], and Euclideanizing-flows
[43]. To satisfy mode invariance, we modulate the learned DS to avoid invariance failure as state-
space boundaries [44], similar to how barrier functions are learned to bound a controller [45, 46, 47].
Multi-Step Manipulation Prior LfD works [13, 14, 10, 48] tackle multi-step manipulation by seg-
menting demonstrations via a hidden Markov model. Using segmented motion trajectories, [13]
learned a skill tree, [14] learned DMPs, [10] learned phase transitions, and [49] learned a task
model. Most of these works assume a linear sequence of prehensile subtasks (pick-and-place) with-
out considering how to replan when unexpected mode transitions happen. [48, 49] considered a
non-prehensile scooping task similar to ours, but their reactivity only concerned collision avoidance
in a single mode. [50, 6] improved BC policies with RL, but offered no guarantee of task success.

3 Temporal Logic Imitation: Problem Formulation
Let x ∈ Rn represent the n-dimensional continuous state of a robotic system; e.g., the robot’s end-
effector state in this work. Let α = [α1, ..., αm]T ∈ {0, 1}m be an m-dimensional discrete sensor
state that uniquely identifies a mode σ = L(α). We define a system state as a tuple, s = (x, α) ∈
Rn × {0, 1}m. Overloading the notation, we use σ ∈ Σ, where Σ = {σi}Mi=1, to represent the set
of all system states within the same mode—i.e., σi = {s = (x, α) | L(α) = σi}. In contrast, we
use δi = {x|s = (x, α) ∈ σi} to represent the corresponding set of robot states. Note x cannot
be one-to-one mapped to s, e.g., a level spoon can be either empty or holding soup. Each mode is
associated with a goal-oriented policy, with goal x∗i ∈ Rn. A successful policy that accomplishes a
multi-step task τ with a corresponding LTL specification φ can be written in the form:

ẋ = π(x, α;φ) = ΣMi=1δΩφ(α)σifi(x; θi, x
∗
i ) (1)

with δΩφ(α)σi being the Kronecker delta that activates a mode policy fi(x; θi, x
∗
i ) : Rn → Rn

encoded by learnable parameters θi and goal x∗i . Mode activation is guided by an LTL-equivalent
automaton Ωφ(α)→ σi choosing the next mode σi based on the current sensor reading α.
Demonstrations Let demonstrations for a task τ be Ξ = {{xt,d, ẋt,d, αt,d}Tdt=1}Dd=1 where
xt,d, ẋt,d, αt,d are robot state, velocity, and sensor state at time t in demonstration d, respectively,
and Td is the length of each d-th trajectory. A demonstration is successful if the continuous motion
traces through a sequence of discrete modes that satisfies the corresponding LTL task specification.
Perturbations External perturbations, which many works in Sec. 2 avoid, constitute an integral part
of our task complexity. Specifically, we consider (1) motion-level perturbations that displace a con-
tinuous motion within the same mode, and (2) task-level perturbations that drive the robot outside of
the current mode. Critically, motion-level perturbations do not cause a plan change instantaneously,
but they can lead to future unwanted mode transitions due to covariate shift.
Problem Statement Given (1) an LTL formula φ specifying valid mode transitions for a task τ , (2)
sensors that detect each mode abstraction defined in φ, and (3) successful demonstrations Ξ, we seek
to learn a policy defined in Eq. 1 that generates continuous trajectories guaranteed to satisfy the LTL
specification despite arbitrary external perturbations.

4 Preliminaries
4.1 LTL Task Specification
LTL formulas consist of atomic propositions (AP), logical operators, and temporal operators [51,
23]. Let Π be a set of Boolean variables; an infinite sequence of truth assignments to all APs in Π is
called the trace [Π]. The notation [Π], t |= φ means the truth assignment at time t satisfies the LTL
formula φ. Given Π, the minimal syntax of LTL can be described as:

φ ::= p | ¬φ1 | φ1 ∨ φ2 | Xφ1 | φ1Uφ2 (2)

where p is any AP in Π, and φ1 and φ2 are valid LTL formulas constructed from p using Eq. 2. The
operator X is read as ‘next,’ and Xφ1 intuitively means the truth assignment to APs at the next time
step sets φ1 as true. U is read as ‘until’ and, intuitively, φ1Uφ2 means the truth assignment to APs
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sets φ1 as true until φ2 becomes true. Additionally, first-order logic operators ¬ (not), ∧ (and), ∨
(or), and→ (implies), as well as higher-order temporal operators F (eventually), and G (globally),
are incorporated. Intuitively, Fφ1 means the truth assignment to APs eventually renders φ1 true and
Gφ1 means truth assignment to APs renders φ1 always true from this time step onward.

4.2 Task-Level Reactivity in LTL
To capture the reactive nature of a system given sensor measurements, the generalized reactivity
(1) (GR(1)) fragment of LTL [29, 30] can be used. Let the set of all APs be Π = X ∪ Y , where
sensor states form environment APs X = {α1, ..., αm} and mode symbols form system APs Y =
{σ1, ..., σl}. A GR(1) formula is of the form φ = (φe → φs) [29], where φe models the assumed
environment behavior and φs models the desired system behavior. Specifically,

φe = φei ∧ φet ∧ φeg, φs = φsi ∧ φst ∧ φsg (3)

φei and φsi are non-temporal Boolean formulas that constrain the initial truth assignments of X and
Y (e.g., the starting mode). φst and φet are LTL formulas categorized as safety specifications that
describe how the system and environment should always behave (e.g., valid mode transitions). φsg
and φeg are LTL formulas categorized as liveness specifications that describe what goal the system
and environment should eventually achieve (e.g., task completion) [23]. The formula φ guarantees
the desired system behavior specified by φs if the environment is admissible—i.e., φe is true—and
can be converted to an automaton Ωφ that plans a mode sequence satisfying φ by construction [30].

4.3 Motion-Level Reactivity in DS
Dynamical System [19] is a state-based BC method with a goal-reaching guarantee despite arbitrary
perturbations. A DS policy can be learned from as few as a single demonstration and has the form:

ẋ = f(x) =

K∑
k=1

γk(x)(Akx+ bk) (4)
{

(Ak)TP + PAk = Qk, Qk = (Qk)T ≺ 0

bk = −Akx∗ ∀k (5)

where Ak ∈ Rn×n, bk ∈ Rn are the k-th linear system parameters, and γk(x) : Rn → R+ is
the mixing function. To certify global asymptotic stability (G.A.S.) of Eq. 4, a Lyapunov function
V (x) = (x− x∗)TP (x− x∗) with P = PT � 0, is used to derive the stability constraints in Eq. 5.
Minimizing the fitting error of Eq. 4 with respect to demonstrations Ξ subject to constraints in Eq.
5 yields a non-linear DS with a stability guarantee [19]. To learn the optimal number K and mixing
function γk(x) we use the Bayesian non-parametric GMM fitting approach presented in [19].

4.4 Bisimulation between Discrete Plan and Continuous Policy
To certify a continuous policy will satisfy an LTL formula φ, one can show the policy can simulate
any LTL-satisficing discrete plan of mode sequence generated by Ωφ. To that end, every mode’s
associated policy must satisfy the following bisimulation conditions [25, 23]:

Condition 1 (Invariance). Every continuous motion starting in a mode must remain within the
same mode while following the current mode’s policy; i.e., ∀i ∀t (s0 ∈ σi → st ∈ σi)
Condition 2 (Reachability). Every continuous motion starting in a mode must reach the next mode
in the demonstration while following the current mode’s policy; i.e., ∀i ∃T (s0 ∈ σi → sT ∈ σj)

5 LTL-DS: Methodology
To solve the TLI problem in Sec. 3, we introduce a mode-based imitation policy—LTL-DS:

ẋ = π(x, α;φ) = ΣMi=1δΩφ(α)σi︸ ︷︷ ︸
offline learning

Mi

(
x; Γi(x), x∗i

)︸ ︷︷ ︸
online learning

fi(x; θi, x
∗
i )︸ ︷︷ ︸

offline learning

, (6)

During offline learning, we synthesize the automaton Ωφ from φ as outlined in Sec. 4.2 and learn DS
policies fi from Ξ according to Sec. 4.3. While the choice of DS satisfies the reachability condition
as explained later, nominal DS rollouts are not necessarily bounded within any region. Neither do
we know mode boundaries in TLI. Therefore, an online learning phase is necessary, where for each
mode policy fi we learn an implicit function, Γi(x) : Rn → R+, that inner-approximates the mode
boundary in the state-space of a robot x ∈ Rn. With a learned Γi(x) for each mode, we can construct
a modulation matrix Mi that ensures each modulated DS—Mifi—is mode invariant.
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Figure 3: (a) Task automaton for a scooping task LTL. Mode a, b, c, d are reaching, scooping, transporting,
and done mode respectively. Atomic proposition r, s, t denote sensing the spoon reaching the soup, soup on
the spoon, and task success respectively. During successful demonstrations, only mode transitions in black,
a ⇒ b ⇒ c ⇒ d, are observed. Additional valid transitions in gray, b ⇒ a, c ⇒ a, and c ⇒ b, are given by
the LTL to help recover from unexpected mode transitions. (b) System flowchart of LTL-DS.

5.1 Offline Learning Phase
Synthesis of LTL-Satisficing Automaton We convert an LTL to its equivalent automaton with [52],
which plans the next mode given the current sensor reading. Assuming all possible initial conditions
for the system are specified in the LTL, the automaton is always deployed from a legal state.
Sensor-based Motion Segmentation and Attractor Identification Given demonstrations in Ξ and
accompanying sensor readings related to the set of M modes, we can automatically segment the
trajectories intoM clusters and corresponding attractor set X∗. Refer to Appendix C for details.
Ensuring Goal Reachability with Learned DS Mode Policies While any BC variant with a sta-
bility guarantee can satisfy reachability (see Sec. 2), we focus on the G.A.S. DS formulation and
learning approach defined in Section 4.3 that ensures every x ∈ Rn is guaranteed to reach x∗i . By
placing x∗i within the boundary set of δj for a mode σj , we ensure mode σj is reachable from every
s in mode σi. Note f(x) cannot model sensor dynamics in α. Yet, we employ mode abstraction to
reduce the imitation of a system state trajectory in s—which includes the evolution of both the robot
and sensor state—to just a robot state trajectory in x.

5.2 Online Learning Phase
Iterative Mode Boundary Estimation via Invariance Failures As shown in Fig. 2, DS can suffer
from invariance failures in regions without data coverage. Instead of querying humans for more data
in those regions [20], we leverage sparse events of mode exits detected by sensors to estimate the
unknown mode boundary. Specifically, for each invariance failure, we construct a cut that separates
the failure state, xTf , from the mode-entry state, x0, the last in-mode state, xTf−1, and the mode
attractor, x∗. We ensure this separation constraint with a quadratically constrained quadratic pro-
gram (QCQP) that searches for the normal direction (pointing away from the mode) of a hyper-plane
that passes through each xTf−1 such that the plane’s distance to x∗ is minimized. The intersection
of half-spaces cut by hyper-planes inner approximates a convex mode boundary, as seen in Fig. 4.
Adding cuts yields better boundary estimation, but is not necessary unless the original vector field
flows out of the mode around those cuts. For more details, refer to Appendix E.3.
Ensuring Mode Invariance by Modulating DS We treat each cut as a collision boundary that
deflects DS flows following the approach in [44, 53]. In our problem setting the mode boundary
is analogous to a workspace enclosure rather than a task-space object. Let existing cuts form an
implicit function, Γ(x) : Rn → R+, where Γ(x) < 1, Γ(x) = 1,Γ(x) > 1 denote the estimated in-
terior, the boundary and the exterior of a mode. 0 < Γ(x) <∞monotonically increases as x moves
away from a reference point xr inside the mode. For x outside the cuts, or inside but moving away
from the cuts, we leave f(x) unchanged; otherwise, we modulate f(x) to not collide with any cuts
as ẋ = M(x)f(x) by constructing a modulation matrix M(x) through eigenvalue decomposition:{

M(x) = E(x)D(x)E(x)−1, E(x) = [r(x) e1(x) ... ed−1(x)], r(x) = x−xr
‖x−xr‖

D(x) = diag(λr(x), λe1(x), ..., λed−1
(x)), λr(x) = 1− Γ(x), λe(x) = 1

(7)

The full-rank basis E(x) consists of a reference direction r(x) stemming from xr toward x, and
d− 1 directions spanning the hyperplane orthogonal to ∇Γ(x), which in this case is the closest cut
to x. In other words, all directions e1(x)...ed−1(x) are tangent to the closest cut, except r(x). By
modulating only the diagonal component, λr(x), with Γ(x), we have λr(x) → 0 as x approaches
the closest cut, effectively zeroing out the velocity penetrating the cut while preserving velocity
tangent to the cut. Consequently, a modulated DS will not repeat invariance failures that its nominal
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Figure 4: An illustration of iterative estimation of a mode boundary with cutting planes. A system enters a
mode with an unknown boundary (dashed line) at the black circle, and is attracted to the goal at the orange
circle. The trajectory in black shows the original policy rollout, and the trajectory in red is driven by perturba-
tions. After the system exits the mode and before it eventually re-enters the same mode through replanning, a
cut is placed at the last in-mode state (yellow circle) to bound the mode from the failure state (red cross). When
the system is inside the cuts, it experiences modulated DS and never moves out of the cuts (flows moving into
the cuts are not modulated); when the system is outside the cuts but inside the mode, it follows the nominal DS.
Note only mode exits in black are invariance failures in need of modulation (green circles); mode exits in red
are driven by perturbations to illustrate that more cuts lead to better boundary approximation.

counterpart experiences as long as the mode is bounded by cuts. Notice this modulation strategy is
not limited to DS and can be applied to any state-based BC method to achieve mode invariance.

6 Proof
Next, we prove LTL-DS produces a continuous trajectory that satisfies an LTL specification. We
start with assumptions and end with theorems. Detailed proofs are provided in Appendix A.
Assumption 1. All modes are convex.
This assumption leads to the existence of at least one cut—i.e., the supporting plane [54], which can
separate a failure state on the boundary from any other state within the mode. A corollary is that
the boundary shared by two modes, which we call a guard surface, Gij = δi ∩ δj , is also convex.
Since all transitions out of a mode observed during demonstrations reside on the mode boundary,
their average location, which we use as the attractor for the mode, will also be on the boundary.
Assumption 2. There are a finite number of external perturbations of arbitrary magnitudes.
Given zero perturbation, all BC methods should succeed in any task replay, as the policy rollout will
always be in distribution. If there are infinitely many arbitrary perturbations, no BC methods will
be able to reach a goal. In this work, we study the setting in between, where there are finitely many
motion- and task-level perturbations causing unexpected mode exits. Environmental stochasticity is
ignored, as its cumulative effects can also be simulated by external perturbations.
Assumption 3. Perturbations only cause transitions to modes already seen in the demonstrations.
While demonstrations of all valid mode transitions are not required, they must minimally cover all
possible modes. If a system encounters a completely new sensor state during online interaction, it
is reasonable to assume that no BC methods could recover from the mode unless more information
about the environment is provided.
Theorem 1. (Key Contribution 1) A nonlinear DS defined by Eq. 4, learned from demonstrations,
and modulated by cutting planes as described in Section 5.2 with the reference point xr set at the
attractor x∗, will never penetrate the cuts and is G.A.S. at x∗. Proof: See Appendix A.
Theorem 2. (Key Contribution 2) The continuous trace of system states generated by LTL-DS de-
fined in Eq. 6 satisfies any LTL specification φ under Asm. 1, 2, and 3. Proof: See Appendix A.

7 Experiments
7.1 Single-Mode Invariance and Reachability
We show quantitatively both reachability and invariance are necessary for task success. We compare
DS and a NN-based BC policy (denoted as BC) to represent policies with and without a stability
guarantee. Figure 5 shows that policy rollouts start to fail (turn red) as increasingly larger perturba-
tions are applied to the starting states; however, DS only suffers from invariance failures, while BC
suffers from both invariance and reachability failures (due to diverging flows and spurious attrac-
tors). Figure 5 (right) shows that all flows are bounded within the mode for both DS and BC after
two cuts. In the case of DS, flows originally leaving the mode are now redirected to the attractor by
the cuts; in the case of BC, while no flows leave the mode after modulation, spurious attractors are
created, leading to reachability failures. This is a counterfactual illustration of Thm. 1, that policies
without a stability guarantee are not G.A.S. after modulation. Figure 6 verifies this claim quanti-
tatively and we empirically demonstrate that a stable policy requires only four modulation cuts to
achieve a perfect success rate—which an unstable policy cannot be modulated to achieve.
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Figure 5: Policy rollouts from different starting states for a randomly generated convex mode. The top row
shows BC results, and the bottom row depicts DS results. The left column visualizes the nominal policies
learned from two demonstrations (black trajectories) reaching the orange attractor. The middle columns add
different levels of Gaussian noise to the initial states sampled from the demonstration distribution. Blue trajec-
tories successfully reach the attractor, while red trajectories fail due to either invariance failures or reachability
failures. (Note that these failures only occur at locations without data coverage.) The right columns show
that cutting planes (blue lines) separate failures (red crosses) from last-visited in-mode states (yellow circles)
and consequently bound both policies to be mode-invariant. Applying cutting planes to BC policies without a
stability guarantee cannot correct reachability failures within the mode. More results in Appendix E.

Policy Reachability Invariance No Noise Small Noise Large Noise
BC 7 7 88.9 72.4 58.6

BC+mod 7 3 91.9 83.6 76.0
DS 3 7 100 97.0 86.9

DS+mod 3 3 100 100 100
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Figure 6: (Left) The success rate (%) of a single-mode reaching task. As we begin to sample out of distribution
by adding more noise to the demonstrated states, the BC’s success rate degrades more rapidly than the DS’.
After modulation, DS (+mod) maintains a success guarantee, which BC (+mod) falls short of due to the base
policy’s lack of a stability guarantee. (Right) Empirically, the invariance of a single mode requires only a finite
number of cuts for a nominal policy with a stability guarantee. Regardless of the noise level, DS achieves a
100% success rate after four cuts, while BC struggles to improve performance with additional cuts. Thick lines
represent mean statistics and shaded regions show the interquartile range. More details in Appendix E.

Figure 7: Rollouts of a multi-step scooping task under perturbations. The first row shows that sequencing DS
policies with an automaton can lead to looping without boundary estimation. The second and third rows show
that modulation prevents looping and enables the system to eventually reach the goal mode despite repeated
perturbations. We show the desired discrete plan at the top of each sub-figure and annotate the current mode
transition detected in the blue box. Black and red trajectories signify original and perturbed rollouts.
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7.2 Multi-Modal Reactivity and Generalization to New Tasks
We now empirically demonstrate that having a reactive discrete plan alone is insufficient to guarantee
task success without mode invariance for tasks with multiple modes. Consider the multi-modal soup-
scooping task introduced in Fig. 2. Formally, we define three environment APs, r, s, t, sensing the
spoon is in contact with the soup, has soup on it, and has arrived at a target location respectively.
Given successful demonstrations, sensors will record discrete transitions (¬r∧¬s∧¬t)⇒ (r∧¬s∧
¬t)⇒ (¬r∧s∧¬t)⇒ (¬r∧¬s∧ t), from which four unique sensor states are identified. We label
each sensor state as a mode with robot AP a (reaching) ⇒ b (scooping) ⇒ c (transporting) ⇒
d (done). The Invariance of mode b enforces contact with soup during scooping, and the invariance
of mode c constrains the spoon’s orientation to avoid spilling. We follow the TLP convention to
assume LTL formulas are provided by domain experts (although they can also be learned from
demonstrations [51, 55].) The specific LTL for the soup-scooping task is detailed in Appendix F,
and can be converted into a task automaton as shown in Fig. 3. One might assume the automaton is
sufficient to guarantee task success without modulation, as it only needs to replan a finite number of
times assuming a finite number of perturbations; however, not enforcing mode invariance can lead to
looping at the discrete level, and ultimately renders the goal unreachable, as depicted in the top row
of Fig. 7. In contrast, looping is prevented when modulation is enabled, as the system experiences
each invariance failure only once.

Robot Experiments First, we implement the soup-scooping task on a Franka Emika robot arm as
shown in Fig. 1. We show in videos on our website that (1) DS allows our system to compliantly
react to motion-level perturbations while ensuring system stability; (2) LTL allows our system to
replan in order to recover from task-level perturbations; and (3) our modulation ensures the robot
learns from previous invariance failures to avoid repeating them. To test robustness against unbiased
perturbations, we collect 30 trials from 6 humans as seen in Appendix H. All trials succeed even-
tually in videos. We do not cherry-pick these results, and the empirical 100% success rate further
corroborates our theoretic success guarantee. Second, we implement an inspection task as a per-
manent interactive exhibition at MIT Museum, with details documented in Appendix I. Lastly, we
show a color tracing task testing different automaton structures with details in Appendix J.

Generalization LTL-DS can generalize to a new task by reusing learned DS if the new LTL shares
the same set of modes. Consider another multi-step task of adding chicken and broccoli to a pot.
Different humans might give demonstrations with different modal structures (e.g., adding chicken
first vs adding broccoli first). LTL-DS can be reformulated to learn a policy for each mode transition
(each mode can now have multiple policies), resulting in a collection of DS skills that can be flexibly
recombined to solve new tasks. To generate different task LTLs, a human only needs to edit the φst
portion of the original LTL formula. We provide further details of this analysis in Appendix G.

8 Limitations

TLI assumes the existence of suitable mode abstractions, reactive logic formulas and perfect sensors
to detect mode transitions, which can be difficult to obtain without non-trivial domain knowledge.
Our work is based on the assumption that for well-defined tasks (e.g., assembly tasks in factory set-
tings), domain expertise in the form of a logic formula is a cheaper knowledge source than collecting
hundreds of motion trajectories to avoid covariate shift (we use up to 3 demonstrations in all experi-
ments). Moreover, even when abstractions for a task are given by an oracle, an LfD method without
either the invariance or the reachability property will not have a formal guarantee of successful task
replay, which is this work’s focus. In future work, we will learn mode abstractions directly from
sensor streams such as videos so that our approach gains more autonomy without losing reactivity.

9 Conclusion

In this paper, we formally introduce the problem of temporal logic imitation as imitating continuous
motions that satisfy an LTL specification. We identify the fact that learned policies do not necessarily
satisfy the bisimulation criteria as the main challenge of applying LfD methods to multi-step tasks.
To address this issue, we propose a DS-based approach that can iteratively estimate mode boundaries
to ensure invariance and reachability. Combining the task-level reactivity of LTL and the motion-
level reactivity of DS, we arrive at an imitation learning system able to robustly perform various
multi-step tasks under arbitrary perturbations given only a small number of demonstrations. We
demonstrate our system’s practicality on a real Franka robot.
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A Proofs

Theorem 1. (Key Contribution 1) A nonlinear DS defined by Eq. 4, learned from demonstrations,
and modulated by cutting planes as described in Section 5.2 with the reference point xr set at the
attractor x∗, will never penetrate the cuts and is G.A.S. at x∗.

Proof Let the region bounded by cuts beD, which is non-empty as it contains at least one demon-
stration. If x /∈ D, i.e., x is outside the cuts, the nominal DS f(x) will not be modulated. Since
f(x) is G.A.S. at x∗ and x∗ ∈ D, a robot state at x will enter D in a finite amount of time. If x ∈ D
and [E(x)−1f(x)]1 < 0, which corresponds to f(x) having a negative component in the direction
of r∗(x) = x−x∗

‖x−x∗‖ , f(x) is moving away from cuts and toward the attractor. In this case, we leave
f(x) unmodulated and the original G.A.S. property holds true. If x ∈ D and [E(x)−1f(x)]1 ≥ 0,
where the nominal DS could flow out of the cuts, we apply modulation—and, by construction,
M(x)f(x) stays inside the cuts. To prove the stability of the modulated DS, we show that the Lya-
punov candidate, V (x) = (x − x∗)TP (x − x∗), in satisfying V̇ (x) = ∂V (x)

∂x f(x) < 0 for f(x),
also satisfies the Lyapunov condition for M(x)f(x) (omitting matrix dependency upon x to reduce
clutter):

V̇ (x) =
∂V (x)

∂x
Mf(x) =

∂V (x)

∂x
EDE−1f(x)

=
∂V (x)

∂x
E diag(1− Γ(x), 1, ..., 1)E−1f(x)

=
∂V (x)

∂x
f(x)− ∂V (x)

∂x
E diag(Γ(x), 0, ..., 0)E−1f(x)

< 0− ∂V (x)

∂x
r∗(x)TΓ(x)[E−1f(x)]1

< 0− 2(x− x∗)TP x− x∗

‖x− x∗‖︸ ︷︷ ︸
>0 as P�0

Γ(x)︸︷︷︸
>0

[E−1f(x)]1︸ ︷︷ ︸
≥0

< 0

(8)

Therefore, M(x)f(x) is G.A.S.

The following lemmas support the proof of Theorem 2.
Lemma 1. LTL-DS generates a discrete reactive plan of mode sequence that satisfies any LTL
formula provided to the algorithm.

Proof Since the task automaton is converted from an LTL formula, all resulting discrete plans of
mode sequence (including the replanned sequence caused by perturbations) are correct by construc-
tion as long as the environment is admissible.
Lemma 2. If a mode transition σi ⇒ σj has been observed in the demonstrations, σj is reachable
from σi by DS fi.

Proof Since σi ⇒ σj has been demonstrated, σi and σj must be connected; let them share a
guard, Gij . Assigning a globally stable DS f(·) : Rn → Rn to each mode σi with region δi ⊂ Rn
guarantees asymptotic convergence of all x in δi to the attractor, x∗i by DS fi. Placing x∗i on guard
Gij ensures that x∗i ∈ δj , and thus ∀s σi ⇒ σj as x→ x∗i .
Lemma 3. If an unseen mode transition σi ⇒ σj occurs unexpectedly, the system will not be stuck
in σj .

Proof While the transition σi ⇒ σj has not been seen in demonstrations, Asm. 3 ensures that
mode σj has been observed and its associated DS fj has been learned. Since the LTL GR(1) frag-
ment does not permit clauses in the form of (F Gφ), which states φ is eventually globally true (i.e.,
the system can stay in σj forever), every discrete plan will have to in finite steps result in σj ⇒ σk
for some k, j 6= k. Having learned fj also validates the existence of x∗j—and, thus, a continuous
trajectory toward Gjk.
Theorem 2. (Key Contribution 2) The continuous trace of system states generated by LTL-DS sat-
isfies any LTL specification φ under Asm. 1, 2, and 3.
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Proof Lemma 1 proves any discrete plan generated by LTL-DS satisfies the LTL specification.
Lemmas 2 and 3 and Asm. 2 ensure the reachability condition of all modes. Thm. 1 certifies the
modulated DS will be bounded inside the cuts, and thus the mode these cuts inner-approximate.
Consequently, a finite number of external perturbations only require a finite number of cuts in order
to ensure mode invariance. Given that bisimulation is fulfilled, the continuous trace generated by
LTL-DS simulates a LTL-satisficing discrete plan, and thus satisfies the LTL.

B Motivation for Mode-based Imitation

Our work aims to achieve generalization in regions of the state space not covered by initial demon-
strations. A well-studied line of research is to collect more expert data [20] so that the policy will
learn to recover from out-of-distribution states. Our central observation in Fig. 2 is that there exists
some threshold that separates trajectories deviating from expert demonstrations (black) into suc-
cesses (blue) and failures (red). The threshold can be embodied in mode boundaries, which lead
to the notion of a discrete mode sequence that acts as the fundamental success criteria for any con-
tinuous motions. In fact, online data collection to improve policies in DAGGER [20] can be seen
as implicitly enforcing mode invariance. We take the alternative approach of explicitly estimating
mode boundaries and shift the burden from querying for more data to querying for a task automaton
in the language of LTL.

C Sensor-based Motion Segmentation and Attractor Identification

time step 1 2 3 4 5 6 7 8 9 10
demo 1 x1,1 x2,1 x3,1 x4,1 x5,1 x6,1 x7,1 x8,1 x9,1 x10,1

demo 2 x1,2 x2,2 x3,2 x4,2 x5,2 x6,2 x7,2 x8,2 x9,2 x10,2

Table 1: Demonstrations are segmented into three AP regions (shown by color) based on three
unique sensor states for DS learning. We use the average location of the last states (transition states
to the next AP) in each AP as the attractor for the corresponding DS.

Let {{xt,k, ẋt,k, αt,k}Tkt=1}Kk=1 be K demonstrations of length Tk. The motion trajectories in xt,k

are clustered and segmented into the same AP region if they share the same sensor state αt,k. For
example, in Table. 1 two demonstrations of ten time steps form three AP regions (colored by red,
blue and green) based on three unique sensor readings. To obtain the attractor for each of the three
DS to be learned , we average the last state in the trajectory segment. For instance, the average
location of x2,1 and x4,2, x6,1 and x9,2, x10,1 and x10,2 become the attractor for the red, blue and
green AP’s DS respectively.

D Relation of TLI to Prior Work

This work explores a novel LfD problem formulation (temporal logic imitation) that is closely re-
lated to three research communities. First, there is a large body of work on learning task specifica-
tions in the form of LTL formulas from demonstrations [51, 55, 56]. We do not repeat their endeavor
in this work and assume the LTL formulas are given. Second, given LTL formulas there is another
community (temporal logic planning) that studies how to plan a continuous trajectory that satisfies
the given LTL [26, 27, 28, 23]. Their assumption of known abstraction boundaries and known dy-
namics allow the planned trajectory to satisfy the invariance and reachability (bisimulation) criteria
respectively, thus certifying the planned continuous trajectory will satisfy any discrete plan. Our
observation is that the bisimulation criteria can also be used to certify that a LfD policy can sim-
ulate the discrete plan encoded by any LTL formula, which we dub as the problem of TLI. To the
best of our knowledge, our work is the first to formalize TLI and investigate its unique challenges
inherited from the LfD setting. On the one hand, we no longer have dynamics to plan with but we
have reference trajectories to imitate. To satisfy reachability, it is necessary to leverage a third body
of work–LfD methods with global stability guarantee (DS) [38, 19, 57]. On the other hand, we note
LfD methods typically do not satisfy mode invariance due to unknown mode boundaries that are
also innate to the LfD setting. Thus, we propose learning an approximate mode boundary leverag-
ing sparse sensor events and then modulating the learned policies to be mode invariant. We prove
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DS policies in particular after modulation will still satisfy reachability, and consequently certifying
they will satisfy any given LTL formulas. Figure 8 summarizes how TLI’s relationship to prior work,
where gray dashed boxes represent prior work and yellow dashed box highlights our contribution.

Figure 8: How TLI fits in relation to prior work, where gray dashed boxes represent prior work and
yellow dashed box highlights our contribution.

E Single-mode Experiments

E.1 Experiment Details

We randomly generate convex modes and draw 1−3 human demonstrations, as seen in Fig. 5 (left).
To check mode invariance, we sample starting states from the demonstration distribution perturbed
by Gaussian noise with standard deviation of 0%, 5%, and 30% of the workspace dimension. Sam-
pling with zero noise corresponds to sampling directly on the demonstration states, and sampling
with a large amount of noise corresponds to sampling from the entire mode region. To enforce in-
variance, we iteratively sample a failure state and add a cut until all invariance failures are corrected.
A task replay is successful if and only if an execution trajectory both reaches the goal and stays
within the mode. For each randomly generated convex mode, we sampled 100 starting states and
computed the average success rate for 50 trials. We show DS+modulation ensures both reachability
and invariance for five additional randomly sampled convex modes in Fig. 9.

E.2 BC Policy Architecture and Training Details

For the Neural-network-based BC policy, we use an MLP architecture that consists of 2 hidden
layers both with 100 neurons followed by ReLU activations. We use tanh as the output activation,
and we re-scale the output from tanh layer to [-50 – 50]. Each demonstration trajectory consists of
about 200 pairs of states and velocities as the training data to the network. Since we are training a
state-based policy that predicts velocities from input states, we treat these data points as i.i.d. For
training, we use Adam as the optimizer with a learning rate of 1e-3 for max 5000 epochs.

E.3 QCQP Optimization Details

To find the normal direction of a hyperplane that goes through a last-in-mode states xTf−1 in Sec.
5.2, we solve the following optimization problem, where w is the normal direction we are searching
over; f = 1, 2, ... indexes a set of failure states; and Tf is the corresponding time-step of first
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detecting an invariance failure (T alone is used as matrix transpose.)

min
w

(wT (x∗ − xTf−1))2

s.t. ‖w‖ = 1

wT (x∗ − xTf−1) ≤ 0

wT (x0 − xTf−1) ≤ 0

wT (xTf′−1 − xTf−1) ≤ 0 ∀f ′

(9)

While specialized QCQP packages can be used to solve this optimization problem, we use a generic
nonlinear Matlab function fmincon to solve for w in our implementation.

F Multi-modal Experiments

After abstractions—environment APs, r, s, t, and robot APs, a, b, c, d—for the soup-scooping task
in Sec. 7.2 are defined, the reactive LTL formula can be written as φ = ((φei ∧ φet ∧ φeg) →
(φsi ∧ φst ∧ φsg)). φsi and φei specify the system’s initial mode, a, and the corresponding sensor state.
φsg and φeg set mode d as the eventual goal for the robot, with no particular goal for the environment.
φet specifies the environmental constraints that determine which sensor states are true in each mode,
as well as the fact that the system can only be in one mode at any times. φst specifies all valid
transitions for each mode.

φei = ¬r ∧ ¬s ∧ ¬t; φeg = True;

φet = G((a↔ (¬r ∧ ¬s ∧ ¬t) ∧ (b↔ (r ∧ ¬s ∧ ¬t))
∧ (c↔ (¬r ∧ s ∧ ¬t) ∧ (d↔ (¬r ∧ ¬s ∧ t))

∧G((a ∧ ¬b ∧ ¬c ∧ ¬d) ∨ (¬a ∧ b ∧ ¬c ∧ ¬d)

∨ (¬a ∧ ¬b ∧ c ∧ ¬d) ∨ (¬a ∧ ¬b ∧ ¬c ∧ d));

φsi = a; φsg = GFd;

φst = G((a→ (Xa ∨ Xb)) ∧ (b→ (Xa ∨ Xb ∨ Xc))
∧ (c→ (Xa ∨ Xb ∨ Xc ∨ Xd)) ∧ (d→ Xd));

Automatic construction of GR(1) LTL formulas One benefit of using the GR(1) fragment of LTL
is that it provides a well-defined template for defining a system’s reactivity [30]1. While in this work
we follow the TLP convention that assumes the full GR(1) formulas are given, the majority of these
formulas can actually be automatically generated if Asm. 3 holds true. Specifically, once the abstrac-
tion, r, s, t, a, b, c, d is defined, formulas φet , φ

e
g are correspondingly defined as shown above, and

they remain the same for different demonstrations. If a demonstration displaying a ⇒ b ⇒ c ⇒ d
is subsequently recorded, formulas φei , φ

s
i , φ

s
g as shown above can then be inferred. Additionally a

partial formula φst = G((a → (Xa ∨ Xb)) ∧ (b → (Xb ∨ Xc) ∧ (c → (Xc ∨ Xd)) ∧ (d → Xd))
can be inferred. Synthesis from this partial φ = ((φei ∧ φet ∧ φeg) → (φsi ∧ φst ∧ φsg)) results in a
partial automaton in Fig. 3 with only black edges. During online iteration, if perturbations cause
unexpected transitions, b⇒ a and/or c⇒ a and/or c⇒ b, which are previously not observed in the
demonstration, φst will be modified to incorporate those newly observed transitions as valid mode
switches, and a new automaton will be re-synthesized from the updated formula φ. The gray edges
in Fig. 3 reflect those updates after invariance failures are experienced. Asm. 3 ensures the com-
pleteness of the demonstrations with respect to modes, i.e., the initially synthesized automaton might
be missing edges but not nodes compared to an automaton synthesized from the ground-truth full
formula. For general ground-truth LTL formulas not part of the GR(1) fragment or demonstrations
not necessarily satisfying Asm. 3, we cannot construct the formulas using the procedure outlined
above. In that case, we can learn the formulas from demonstrations in a separate stage [51, 55].

In this work, we assume full LTL formulas are provided by domain experts. Since they are full
specifications of tasks, the resulting automatons will be complete w.r.t. all valid mode transitions
(e.g., including both the black and gray edges in Fig. 3), and will only need to be synthesized once.
Given the soup-scooping LTL defined above, we ran 10 experiments, generating 1−3 demonstrations

1The main benefit is that GR(1) formulas allow fast synthesis of their equivalent automatons [29].
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Figure 9: For each convex mode, we use 1-3 demonstrations for learning shown in black. Successful rollouts
are shown in blue while unsuccessful rollouts are shown in red. We apply modulation to the large noise case and
within four cuts all DS policies are modulated to be mode invariant. While BC policies can also be modulated
to be mode invariant, they still suffer from existing reachability failures prior to modulation as well as new
reachability failures introduced by modulation. For example, in BC flows that are originally flowing out of the
mode can lead to spurious attractors at the cuts after modulation. We prove this will not happen for DS due to
its stability guarantee.

for each, and learning a DS per mode. We applied perturbations uniformly sampled in all directions
of any magnitudes up to the dimension of the entire workspace in order to empirically verify the
task-success guarantee. We follow the QCQP optimization defined in Appendix B to find cuts to
modulate the DS. Simulation videos can be found on the project page.
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G Generalization Results

LTL-DS can generalize to a new task by reusing learned DS if the new LTL shares the same set of
modes. Consider another multi-step task of adding chicken and broccoli to a pot. Different humans
might give demonstrations with different modal structures (e.g., adding chicken vs adding broccoli
first) as seen in Fig. 10 (a). LTL-DS learns individual DS which can be flexibly combined to solve
new tasks with new task automatons, as illustrated in Fig. 10 (c-f). To get these different task
automatons, a human just needs to edit the φst portion of the LTL formulas differently.

Figure 10: Reuse learned DS for new tasks by editing their task automaton via LTL. (a) Two demonstrations
(purple and blue) solve a task of adding both chicken (yellow region) and broccoli (green region) to a pot
(dark region) in different order as visualized by the automaton on the left. (b) Demonstrations are segmented
into parts by mode region, which are then shifted to their average attractor locations (orange circles) for DS
learning. Since a mode can proceed to different next modes in this case, we adapt the mode-based DS policy to
be associated with each unique mode transition instead. The learned DS can generalize to new tasks given new
automatons specifying (c) the order: white (w) ⇒ yellow (y) ⇒ dark (d) ⇒ green (g) ⇒ dark (d), (d) the order:
white ⇒ green ⇒ dark ⇒ yellow ⇒ dark, (e) the goal: getting only chicken, or (f) the goal: getting chicken
continuously. The trajectory in red shows perturbations and the trajectory in black shows recovery according
to the automaton structure.

We describe LTL formulas for variants of the cooking task of adding chicken and broccoli to a pot
as visualized in Fig. 10. We use mode AP w, y, g, d to define configurations of empty spoon
(white region), transferring chicken (yellow region), transferring broccoli (green region), and finally
dropping food in the pot (dark region) . We follow the description of scooping task LTL to define
φei , φ

e
t , φ

e
g, φ

s
i , φ

s
g for the cooking tasks, which are shared by them all. We focus on φst here as it

captures mode transitions and is different for a different task. We denote the φst portion of LTL for
the new task of adding chicken first, adding broccoli first, adding chicken only, and adding chicken
continuously as φcb, φbc, φc, and φcc respectively.

φcb = G((w1 → Xy) ∧ (y → (Xw1 ∨ Xd1))

∧ (d1 → (Xw2 ∨ Xg)) ∧ (w2 → Xg)

∧ (g → (Xw2 ∨ Xd2)) ∧ (d2 → Xd2));

φbc = G((w1 → Xg) ∧ (g → (Xw1 ∨ Xd1))

∧ (d1 → (Xw2 ∨ Xy)) ∧ (w2 → Xy)

∧ (y → (Xw2 ∨ Xd2)) ∧ (d2 → Xd2));

φc = G((w → (Xy ∨ Xg)) ∧ (y → (Xw ∨ Xd))

∧ (g → Xw) ∧ (d→ Xd));

φcc = G((w → Xy) ∧ (y → (Xw ∨ Xd)) ∧ (d→ Xw));

Note mode w1 and w2 denote visiting the white region before and after some food has been added to
the pot and they share the same motion policy. The same goes for mode d1 and d2. These formulas
can be converted to task automatons in Fig. 10. We show animations of these tasks on the project
page.
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H Robot Experiment 1: Soup-Scooping

We implemented the soup-scooping task on a Franka Emika robot arm. As depicted in Fig. 1, the
task was to transport the soup (represented by the red beads) from one bowl to the other. Two demon-
stration trajectories were provided to the robot via kinesthetic teaching, from which we learned a DS
to represent the desired evolution of the robot end-effector for each mode. The target velocity, ẋ,
predicted by the DS was integrated to generate the target pose, which was then tracked by a Cartesian
pose impedance controller. The robot state, x, was provided by the control interface. Sensor AP r
tracked the mode transition when the spoon made contact with the soup, and sensor AP t tracked the
mode transition when the spoon reached the region above the target bowl. r and t became true when
the distance between the spoon and the centers of the soup bowl and the target bowl (respectively)
were below a hand-tuned threshold. Sensor AP s became true when red beads were detected either
from a wrist camera via color detection or through real-time human annotation. We visualize the
modulation of robot DS in three dimensions—y, z, and pitch—in Fig. 11.

Figure 11: Modulation of sampled robot trajectories. The orange plane represents a guard surface between the
transporting mode and the done mode, and the blue plane represents the mode boundary for the transporting
mode. The red crosses denote an invariance failure, and the pink diamonds denote the attractor. Before modu-
lation, there are trajectories prematurely exiting the mode; after modulation, all trajectories are bounded inside
the mode.

Unbiased human perturbations Since external perturbations are an integral part of our task com-
plexity, we recruited six human subjects without prior knowledge of our LTL-DS system to perturb
the robot scooping setup. Each subject is given five trials of perturbations. In total, we collected
30 trials as seen in Fig. 12, each of which is seen as an unbiased i.i.d. source of perturbations. On
our project page, we show all 30 trials succeed eventually in videos. We did not cherry-pick these
results, and the empirical 100% success rate further corroborates our theoretic success guarantee.
Interestingly, common perturbation patterns (as seen in the videos) emerge from different partici-
pants. Specifically, we see adversarial perturbations where humans fight against the robot and
cooperative perturbations where humans help the robot to achieve the goal of transferring at least
one bead from one bowl to the other. In the case of adversarial perturbations, DS reacts and LTL
replans. In the case of collaborative perturbations, DS is compliant and allows humans to also guide
the motion. In the case where humans are not perturbing yet the robot makes a mistake (e.g. during
scooping), LTL replans the scooping DS until the robot enters the transferring mode successfully.
The fact that we do not need to hard code different rules to handle invariance failures caused by
either perturbations or the robot’s own execution failures in the absence of perturbations highlights
the strength of our LTL-powered sensor-based task reactivity.

I Robot Experiment 2: Inspection Line

To further validate the LTL-DS approach we present a second experimental setup that emulates an
inspection line, similar to the one used to validate the LPV-DS approach [19] – which we refer to
as the vanilla-DS and use to learn each of the mode motion policies. In [19] this task was presented
to validate the potential of the vanilla-DS approach to encode a highly-nonlinear trajectory going
from (a) grasping region, (b) passing through inspection entry, (c) follow the inspection line and (d)
finalizing at the release station with a single DS. In this experiment we show that, even though it
is impressive to encode all of these modes (and transitions) within a single continuous DS, if the
sensor state or the LTL task-specification are not considered the vanilla-DS approach will fail to
achieve the high-level goal of the task which is, to pass slide the object along the inspection line.
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To showcase this, in this work we focus only on (b)→ (c)→ (d) with (a) following a pre-defined
motion and grasping policy for experimental completeness.

Figure 13: Robot Experiment 2: Inspection Line

Inspection Task Details The video of this experiment can be found on our website.

• Sensor model: We implement the sensor model of the inspection task as an object detector on the
inspection track and distances to attractors (defined from AP region-based segmentation described
in new Appendix I). As we created a black background for the inspection task and the camera is
fixed, with a simple blob detector we can detect if the robot is inside or outside of the inspection
line. Hence, the sensor state is a binary variable analogous to that of the scooping task.

• Task specification: The proposed inspection task can be represented with 2 modes (a) Go to in-
spection entry→ (b) follow inspection line and release. The AP regions are the bounding boxes
around the inspection entry and release station shown in Fig. 13 which correspond to the attractor
regions for each mode. Mode (a) requires the robot to reach the mode attractor and detecting
the presence of the cube once it has been reached. Mode (b) requires the cube to slide along the
inspection track (reaching the end) and then lift the cube to drop it at the release station.

• Offline Learning: We use two demonstrations of the inspection task, together with an LTL specifi-
cation and run our offline learning algorithm used for the soup-scooping task (without any modifi-
cations), as shown in the supplementary video from 0:00-0:18s. Without any adversarial pertur-
bations or environmentally induced failures, the vanilla-DS approach is capable of accomplishing
the defined inspection task without invariance failures as shown in 0:19-0:32s.

• Invariance Failures of Vanilla-DS: Even though the vanilla-DS approach is now used to learn a
less complex trajectory (in terms of trajectory non-linearity), as we excluded the grasping region,
we can see that it easily fails to achieve the inspection task when subject to large adversarial
perturbations that lead the robot towards an out-of-distribution state. This means that the robot
was perturbed in such a way that it is now far from the region where the demonstrations were
provided. Yet, it is robust to small adversarial perturbations that keep the robot in-distribution, as
shown in the supplementary video from 0:33-1:18min. The latter is the strength of DS-based
motion policies in general and these are the type of perturbations that are showcased in [19].
However, since the DS is only guaranteed to reach the target by solely imposing Lyapunov
stability constraints it always reaches it after a large adversarial perturbation, with the caveat
of not accomplishing the actual inspection task. Note that this limitation is not specific to the
vanilla-DS approach [19], it is a general limitation of goal-reaching LfD methods that only care
about guaranteeing stability at the motion-level be it through Lyapunov or Contraction theory.
Hence, by formulating the problem as TLI and introducing sensor states and LTL specification
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into the imitation policy we can achieve convergence at the motion-level and task-level.

• Invariance Guarantee with LTL-DS: As shown in the supplementary video from 1:19-1:43min
we collect a set of invariance failures to construct our mode boundary. Further, from
1:43-2:00min we show the approximated mode boundary from 4 recorded failure states that
approximate the vertical boundary and then from 10 recorded failure states which now approx-
imate the horizontal boundary of the mode. The blue trajectories in those videos correspond to
rollouts of the vanilla-DS learned from the demonstrations in that mode.
From 2:00-3:40min we show two continuous runs of the inspection task, each performing two
inspections. We stress test the learned boundary and LTL-DS approach by performing small
and large adversarial perturbations. As shown in the video, when adversarial perturbations are
small the DS motion policy is robust and still properly accomplishes the inspection task. When
adversarial perturbations are large enough to push the robot outside of the learned boundary, the
LTL-DS brings the robot back to the inspection entry mode and tries the inspection line again
and again and again until the inspection task is achieved as defined by the LTL specification -
guaranteeing task completion.

Comment on Task Definition: In order to learn and encode the entire task (from grasp to release)
with LTL-DS we would need to include a grasping controller within our imitation policy. It is pos-
sible to extend the LTL-DS approach to consider grasping within the imitation policy, yet due to
time limitations we focus solely on the parts of the task that can be learned by the current policy –
that requires only controlling for the motion of the end-effector. We are concurrently working on
developing an approach to learn a grasping policy entirely through imitation, which to the best of
our knowledge does not exist within the problem domains we target. In a near future, we plan to
integrate these works in order to allow LTL-DS to solve problems that include actuating grippers in
such a feedback control framework. Note that, the vanilla-DS approach does not consider the grasp-
ing problem either and the experimental setup presented in [19] uses a simple open-loop gripper
controller that is triggered when the DS reaches the attractor, such triggering is hand-coded and not
learned either in their setup.

J Robot Experiment 3: Color Tracing

Figure 14: The goal is for the end-effector to move through (while staying within) (Y)ellow, (B)lue, (G)reen,
(O)range, (P)ink, and eventually reach (R)ed. If a sensor detects the end-effector is perturbed into the (D)ark
region, the system needs to replan according to a given task automaton such as (a), (b), (c). Note D1, D2, D3,
D4 refer to different modes (entering the dark region from different colors) that appear visually the same.

This experiment demonstrates LTL-DS’ handling of long-horizon multi-step tasks with non-trivial
task structures. Given a single demonstration of kinesthetically teaching the robot end-effector to
move through the colored tiles, the system learns a DS for each of the colored mode. The learned
DS can then be flexibly recombined according to different LTL-equivalent task automatons to react
differently given invariance failures. Specifically, we show in the videos on our website three differ-
ent replanning: (a) mode exit at any colored tile transitions to re-entry at the yellow tile; (b) mode
exit at any colored tile after the blue tile transitions to re-entry at the blue tile; and (c) mode exit at
the yellow tile transitions to the blue tile, while mode exit at the blue tile transitions to the pink tile.
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