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Abstract

When observing task demonstrations, human apprentices are able to identify whether a given task is executed correctly long
before they gain expertise in actually performing that task. Prior research into learning from demonstrations (LfD) has
failed to capture this notion of the acceptability of a tasks execution; meanwhile, temporal logics provide a flexible
language for expressing task specifications. Inspired by this, we present Bayesian specification inference, a probabilistic
model for inferring task specification as a temporal logic formula. We incorporate methods from probabilistic pro-
gramming to define our priors, along with a domain-independent likelihood function to enable sampling-based inference.
We demonstrate the efficacy of our model for inferring specifications, with over 90% similarity observed between the
inferred specification and the ground truth—both within a synthetic domain and during a real-world table setting task.
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1. Introduction

Imagine showing a friend how to play your favorite
quest-based video game. A mission within such a game
might be composed of multiple sub-quests that must be
completed in order to finish that level. In: this scenario, it
is likely that your friend would comprehend what needs
to be done in order to complete the mission well before he
or she was actually able to play the game effectively.
While learning from demonstrations, human apprentices
can identify whether a task is executed correctly long
before gaining expertise in that task. In: the context of
learning from demonstrations for robotic tasks, a system
that can evaluate the acceptability of an execution before
learning to execute a task can lead to more-focused
exploration of execution strategies. Further, a system
that can express its specifications would be more
transparent with regard to its objectives than a system
that simply imitates the demonstrator. Such character-
istics are highly desirable in applications such as
manufacturing or disaster response, where the cost of a
mistake can be especially high. Finally, a robotic system
with a correct understanding of the acceptability of ex-
ecutions can explore more-creative execution traces not
present in the demonstrated set.

Most current approaches to learning from demonstration
frame this problem as one of learning a reward function or
policy within the setting of a Markov decision process;
however, user specification of acceptable behaviors through
reward functions and policies remains an open problem

Arnold et al. (2017). Temporal logics have been used in
prior research as a language for expressing desirable system
behaviors, and can improve the interpretability of specifi-
cations if expressed as compositions of simpler templates
(akin to those described by Dwyer et al., 1999). In: this
work, we propose a probabilistic model for inferring a task’s
temporal structure as a linear temporal logic (LTL)
specification.

A specification inferred from demonstrations is valuable
in conjunction with synthesis algorithms for verifiable
controllers (Kress-Gazit et al., 2009 and Raman et al.,
2015), as a reward signal during reinforcement learning
(Li et al., 2017 and Littman et al., 2017), and as a system
model for execution monitoring. In our work, we frame
specification learning as a Bayesian inference problem.

The flexibility of LTL for specifying behaviors also
represents a key challenge with regard to inference due to a
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large hypothesis space. We define prior and likelihood
distributions over a smaller but relevant part of the LTL
formulas, using templates based on work by Dwyer et al.
(1999). Ideas from universal probabilistic programming
languages formalized by Freer et al. (2014) and Goodman
et al. (2008); Goodman and Stuhlmiiller (2014) are key to
our modeling approach; indeed, probabilistic programming
languages enabled Ellis et al. (2018b, 2015) to perform
inference over complex, recursively defined hypothesis
spaces of graphics programs and pronunciation rules.

We evaluate our model’s performance within three do-
mains. First, we test our model on a two dimensional
synthetic domain and a real-world task involving setting a
dinner table. For both these domains, the ground-truth
specifications are known, and we report the capability of
our model to achieve greater than 90% similarity between
the inferred and ground-truth specifications. We also
demonstrate the capability of our model to infer mission
objective specifications for evaluating large-force combat
flying exercises involving multiple friendly and hostile
aircraft. The LFE domain is particularly challenging and
unique in robotics research. It involves multiple indepen-
dent decision-making participants, some of which act co-
operatively and some adversarially. We demonstrate that our
model makes predictions that are well-aligned with those of
an expert acting as the commander for an example LFE
mission. Further, we demonstrate that our method of using
template compositions allows for an interpretable decision
boundary for the classifier inferred by our model.

Bayesian specification inference was first introduced in
work by Shah et al. (2018); in this paper, we extend the
probabilistic model to be capable of learning both induc-
tively (from positive examples only) and from both positive
and negative examples. We also extend the evaluation
presented by Shah et al. (2018) to include the large-force
exercise domain, a multi-agent domain with independent
agents acting both cooperatively and as adversaries.

2. Related work

Argall et al. (2009), Chernova and Thomaz (2014), and
Ravichandar et al. (2020) provided a comprehensive survey
of prior research into robot learning from demonstration
(LfD) as applied to robotics. This body of work can broadly
be organized into three major categories: imitation of task
demonstrations, inference of task specifications, and
learning models of interactions with the environment.
When LfD is framed through the lens of imitation of
expert trajectories, the objective is to minimize a distance
metric between the demonstrated trajectory and the tra-
jectory performed by the learner. Prior research has utilized
techniques such as dynamic motion primitives (Schaal,
20006), generalized cylinders (Ahmadzadeh et al., 2017),
or an inference-based approach to learning and motion
planning (Rana et al., 2018). A recent method proposed by
Billard et al. (2022) and Figueroa and Billard (2018) lev-
eraged dynamical systems theory and non-parametric priors

to learn the sequence of stable controllers while guaran-
teeing performance and safe interaction with the robot.
Imitation-based approaches are best suited for learning
motion-level task trajectories.

The next class of methods lies at the intersection of
policy imitation and specification inference: inverse rein-
forcement learning (IRL). In these approaches, the dem-
onstrations are recorded as state-action tuples. IRL
algorithms are then designed to align the learned policy with
the demonstrator’s policy in any given state. The task
specification is implicitly encoded as a reward function
representing the task. Ng and Russell (2000) and Abbeel
and Ng (2004) first introduced IRL and through an
optimization-based framing. Ziebart et al. (2008) developed
algorithms for computing the stochastic policy with the
maximum entropy while matching the state-visitation sta-
tistics. Hadfield-Menell et al. (2017) proposed a Bayesian
approach to reward inference in a Markov setting. In:
contrast, Chen et al. (2020) and Brown et al. (2019, 2020)
utilized ranking information to infer a reward function that
enables a learner to outperform the demonstrator.

These works frame IRL in a setting where the underlying
decision process is a Markov decision process (MDP).
Konidaris et al. (2012), Niekum et al. (2015), and Ranchod
et al. (2015) frame the IRL problem in a semi-Markov
setting. Further Unhelkar and Shah (2019) proposed agent
Markov models (AMM), a hierarchical approach that
models the demonstrator’s policy as piecewise Markov with
discrete control modes inferred using a non-parametric
prior. These approaches utilize reward functions or poli-
cies to represent the task specification implicitly. However,
Arnold et al. (2017) challenged the notion of using implicit
modalities of task specification due to the difficulty in
aligning optimal behavior with the intended behavior.
However, choosing a suitable formalism for task specifi-
cations remains an open problem.

Some works directly infer the task specification as an
intermediary representation for the learner. The learner does
not learn “how” to perform the task but infers a binary
classifier that indicates whether a given task execution is
acceptable or not. Different specification formalisms such as
object poses (Toris et al. (2015)), hierarchical task networks
(Breazeal et al., 2004), and relative object poses (Pérez-
D’Arpino and Shah, 2017, Mueller et al., 2018; Luebbers
et al., 2020). While these approaches separate the notion of
task from the method of performing the task, these speci-
fication formalisms are limited in their ability to express
non-Markov task specifications. This paper uses linear
temporal logic (LTL) as the task specification language.

An analog problem to LfD in the software engineering
domain is that of specification mining from execution traces
of a program. Due to the well-studied relationship between
LTL and automata (Vardi, 1996; Gerth et al., 1995), LTL has
been widely used as the specification language of choice for
symbolic planning and specification mining. Jha and Seshia
(2017) provided a theoretical framework for inductive in-
ference of specifications from acceptable and unacceptable
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execution traces. Further Gabel and Su (2008; 2010) and
Chivilikhin et al. (2015) proposed template-based algo-
rithms for specification mining. Lemieux et al. (2015)
proposed Texada, a specification mining tool for inferring
specifications corresponding to a given input template.
These methods were based on exact satisfaction semantics
(the candidate specifications must be satisfied by all exe-
cution traces) and are intended to recover all valid candidate
specifications without quantifying uncertainty. Our pro-
posed approach adopts Bayesian concept learning to allow
for noisy demonstration data and estimates the model’s
uncertainty about the true specification.

Within the context of stochastic sequential decision-
making problems, Kasenberg and Scheutz (2017) and Xu
et al. (2019) proposed specification inference models
conditioned on observations of both state and actions of the
trajectories provided by the demonstrators. Similarly, within
symbolic planning domains, prior research focused on
identifying the minimal LTL formulas that explain the
difference between sets of plan traces (Camacho and
Mcllraith, 2019; Kim et al., 2017). Finally, Chou et al.
(2022) proposed an optimization-based method that infers a
compact specification as a temporal logic formula with
parametric propositions from demonstrations. Our proposed
approach also focuses on inferring specifications from just
state observations. It does not rely upon both positive and
negative examples being available but will benefit from the
availability of negative examples. Further, as it adopts a
Bayesian approach, it infers a posterior belief distribution
over the true specification rather than generating a single
formula as the output. This allows the model to appropri-
ately express its uncertainty over the true specification,
particularly when only limited data is available.

Kong et al. (2014, 2017) proposed algorithms for mining
signal temporal logic (STL) specifications based on a
parametric grammar. Specifically, TempLogln (Kong et al.,
2017) provides the closest baseline to our approach.
However, a key difference is that while TempLogIn per-
forms an exhaustive breadth-first search over candidate
formulas, our sampling-based inference approach can bias
this search over regions of the formula hypothesis space in
more fruitful directions. Moreover, TempLogIn requires
both positive and negative examples, while our approach
learns purely inductively. Vazquez-Chanlatte et al. (2018)
proposed a maximum likelihood estimation framework for
specification inference. We demonstrate that our proposed
likelihood estimator is identical to their estimator for a near-
perfect demonstrator. Finally, Sobti et al. (2023) proposed
an extension of our inductive learning approach (Shah et al.,
2018) to incorporate Bayesian experiment design, where the
demonstration environment is varied to elicit discriminative
and diverse demonstrations from the expert. Here, we focus
on domains where specification inference is run strictly after
data collection and has no influence on the data generation
process.

In this paper, we identified two key challenges in in-
ferring temporal logic specifications from demonstrations.

First, multiple candidate LTL formulas are satisfied by all
observed demonstrations. Longer and more demonstrations
alleviate the problem of ambiguity, but larger datasets are
not always guaranteed in real-world scenarios. To address
this challenge, our approach was inspired by Bayesian
concept learning (Tenenbaum, 1999), where the learner can
encode ambiguity over multiple candidate specifications as
a belief distribution, thus not being restricted to inferring a
single LTL formula. The second key challenge we ad-
dressed was the intractability of the hypothesis space of all
possible LTL formulas. We constrained the hypothesis
space by adopting a template-based approach using a subset
of templates identified by Dwyer et al., 1999. We combined
this with probabilistic programming languages (Freer et al.,
2014; Goodman et al., 2008) to perform Bayesian inference
over complex structured hypothesis spaces. Leveraging
probabilistic programming languages is key to our ap-
proach. Freer et al. (2014) and Goodman et al. (2008)
formalized the idea of a universal probabilistic program-
ming language. These have led to a suite of Turing-complete
probabilistic programming languages such as Church
(Goodman et al., 2008), webppl (Goodman and
Stuhlmiiller, 2014), and Gen (Cusumano-Towner et al.,
2019). Probabilistic programming languages have enabled
adopting a Bayesian approach to grammatical inference (De
la Higuera, 2010) by allowing the composition of modular
inference algorithms over a wide variety of distributions. In:
particular, Ellis et al. (2015; 2018a, 2018b) demonstrated
the success of these approaches in inferring graphics pro-
gram and language grammar rules from very few examples.
Silver et al. (2020) demonstrated the utility of Bayesian
grammatical inference in learning robotic manipulation
policies by chaining primitive skills.

3.Bayesian specification inference

Our goal is to explicitly identify task specifications that
model temporal properties; therefore, we selected linear
temporal logic (LTL) (Pnueli, 1977) as the task specification
language. We leveraged the compositional nature of formal
languages such as LTL, and adopted a template-based
approach that constructs complex specifications by com-
posing a known library of templates. We begin with a brief
introduction to the syntax, definitions, and semantics of
LTL. Next, we identify a relevant fragment of LTL based on
temporal properties identified by Dwyer et al. (1999), and
Menghi et al. (2019) to compose our hypothesis space.
Next, we formally define the problem of Bayesian speci-
fication inference and describe our technical approach.

3.1. Linear temporal logic

Linear temporal logic (LTL), introduced by Pnueli (1977),
provides an expressive grammar for describing temporal
behaviors. A LTL formula is composed of atomic propo-
sitions (discrete time sequences of Boolean literals) and
both logical and temporal operators, and is interpreted over
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traces [a] of the set of propositions, a. The notation [a], tc¢
indicates that ¢ holds at time ¢. The trace [a] satisfies ¢
(denoted as [a]kp) iff [a], Okp. The minimal syntax of LTL
can be described as follows:

9: =p|l o\ 0,ve,| Xo,| 9,Up, 1)

p is an atomic proposition; ¢; and ¢, are valid LTL for-
mulas. The operator X is read as “next” and X¢, evaluates
as true at time ¢ if ¢, evaluates to true at + 1. The operator U
is read as “until” and the formula ¢, Ug, evaluates as true at
time ¢; if ¢, evaluates as true at some time £, > #; and ¢,
evaluates as true for all time steps 7 such that t; <¢<¢,. In
addition to the minimal syntax, we also use the additional
first-order logic operators A (and) and — (implies), as well
as other higher-order temporal operators, F (eventually) and
G (globally). Fp, evaluates to true at #; if ¢; evaluates as
true for some ¢> ;. Go; evaluates to true at ¢, if ¢, evaluates
as true for all #>¢,. While we define the syntax of LTL here,
we provide concrete examples of using LTL to describe
desirable temporal behaviors as we define the hypothesis
space for specification inference.

3.2. Defining the hypothesis space

We identified three temporal properties, namely, global
satsifaction of a constraint, eventual completion of sub-
task, and temporal ordering among the subtasks as the
most relevant temporal behaviors for task specifications.
With @gi0pat> @eventuars A0 @orger representing LTL formulas
for these behaviors, the task specification is written as
follows:

¢ = wglahal /\(oeventual /\goorder (2 )

Note that as the formula is constructed using conjunc-
tions of the subformulas, each subformula must be satisfied
to ensure the completion of the overall task. Next, we define
the LTL templates for each of the subformulas that could be
a part of the task specification.

3.2.1. Global satisfaction. Let T be the set of candidate
propositions to be globally satisfied, and let 7 ST be the
actual subset of satisfied propositions. The LTL formula that
specifies this behavior is written as follows:

O = (ANG(D))) G)

TET

Note that for each proposition, 7 € T, the temporal
property of always satisfying 7 is represented by G(z) in
LTL. Simultaneously satisfying all propositions, (Vz € T,
we compose each individual formula using the conjunction
operator, A, which results in the final formula for ¢g,p4s, as
depicted in equation (3). Such formulas are useful for
specifying that some constraints must always be met—for
example, a robot must avoid collisions while in motion, or
an aircraft must avoid no-fly zones.

3.2.2. Eventual completion. Let ) be the set of all can-
didate subtasks, and let W; < be the set of subtasks that
must be completed if the conditions represented by z,,; w €
W, are met. w,, are propositions representing the completion
of a subtask. The LTL formula that specifies this behavior is
written as follows:

Deventual = ( /\ (ﬂ'w - Fww)) (4)

weW;

Here, the — operator signifies that the eventual com-
pletion of a subtask w € W, is only necessary if the
implicant proposition z,, is true in the initial state. Such
templates are useful in specifying the completion of
certain subgoals conditional on initial task conditions
that the decision-making agent does not control. For
example, a dessert spoon must be placed on the table
(represented by the proposition w,,) if the dinner menu
includes a dessert course (represented by the proposition

Ty)-

3.2.3. Temporal ordering. Every set of feasible ordering
constraints over a set of subtasks is mapped to a DAG over
nodes representing these subtasks. Each edge in the DAG
corresponds to a binary precedence constraint. Let W, be
the set of binary temporal orders defined by W, = {(wy,
wy): wy € V, w, € Descendants(w,)}, where V'is the set of
all nodes within the task graph. Thus, the ordering con-
straints include an enumeration of not just the edges in the
task-graph, but all descendants of a given node. For
subtasks w; and w,, the ordering constraint is written as
follows:

Porder = <( /\ (”WI - (_ﬂ)WZUCOWI))> (5)

w1, w2)EW,

This formula states that if conditions for the execution of
wy i.e. m, are satisfied, w, must not be completed until w;
has been completed. Conditional temporal ordering is useful
not only to enforce ordering constraints among the subgoals
but also to toggle the enforcement when the subgoals are not
accessible. For example, in multi-aircraft large-force mis-
sions, each aircraft type has individual tactical objectives.
As described in our large force exercise (LFE) domain,
suppression of enemy air defense (SEAD) aircraft are re-
sponsible for neutralizing enemy surface-to-air missile
(SAM) systems capable of attacking friendly aircraft. It is
usually desirable for the subgoal to represent enemy SAMs
being inoperable before friendly aircraft enter enemy air-
space, and the ordering template can represent this property;
however, achieving the SEAD subgoal is only possible if
SEAD aircraft are available at the start of the mission,
therefore highlighting the importance of conditional
ordering.

For the purposes of this paper, we assume that all re-
quired propositions a = [r,7,w]" and labeling functions f{x)
are known, along with the sets Tand € and the mapping of
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the condition propositions 7z, to their subtasks. Given
these assumptions, the problem of inferring the correct
formula for a task is equivalent to identifying the correct
subsets 7, Wj, and W,, that explain the observed
demonstrations well.

3.3. Specification learning as Bayesian inference

We represent the task demonstrations as an observed se-
quence of state variables, [x]. Let @ € {0,1}" represent a
vector of finite dimension formed by » Boolean proposi-
tions. The propositions are related to the state variables
through a labeling function, e = f (x), which is known a
priori.

The inference model is provided a label, y, to indicate
whether an execution is acceptable or not, along with the
actual demonstrations. Thus, the training set D = {([a];,
vi); i€ {1,2, ..., Bgemo}} consists of ny,,,, demonstra-
tions along with the label. The output, again, is a
probability distribution P(g|D). The Bayes theorem is
fundamental to the problem of inference, and is stated as
follows:

PP )
POID) = & = PPl ) ©

P(h) is the prior distribution over the hypothesis space,
and P(D|A) is the likelihood of observing the data given a
hypothesis. Our hypothesis space is defined by H= ¢, where
o is the set of all formulas that can be generated by the
production rule defined by the template in equation (2). The
observed data comprises the set of demonstrations provided
to the system by expert demonstrators (note that we assume
all these demonstrations are acceptable). D is the training
dataset.

3.3.1. Prior specification. While sampling candidate for-
mulas as per the template depicted in equation (2), we treat
the sub-formulas in Equations 3, 4, and 5 as independent to
each other. As generating the actual formula, given the
selected subsets, is deterministic, sampling @g,p,; and
Devenmal 18 €quivalent to selecting a subset of a given finite
universal set. Given a set 4, we define SampleSubset(4, p)
as the process of applying a Bernoulli trial with a success
probability of p to each element of A and returning the
subset of elements for which the trial was successful. Thus,
sampling @gopq; aNd Qeyenmar is accomplished by per-
forming SampleSubset(7, p;) and SampleSubset(L2, pr).
Sampling ¢,,4., is equivalent to sampling a DAG, with the
nodes of the graph representing subtasks. Based on domain
knowledge, appropriately constraining the DAG topolo-
gies would result in better inference with fewer demon-
strations. Here, we present three possible methods of
sampling a DAG, with different restrictions on the graph

topology.

Algorithm 1 SampleSetsOfLinearChains
1: function SAMPLESETSOFLINEARCHAIN(S2,Dpart)
2: 1+ 1;C; « ||
: P < random permutation(£2)

3

4 fora € P do

5 C; .append(a)

6: k < Bernoulli(ppart)
7 if k = 1 then

8 i=i+1;C; + ]
9 return C; V j

3.3.1.1. Linear chains. A linear chain is a DAG such that
all subtasks must occur within a single, unique sequence out
of all permutations. Sampling a linear chain is equivalent to
selecting a permutation from a uniform distribution, and is
achieved via the following probabilistic program: for a set of
size n, sample n — 1 elements from that set without re-
placement, with uniform probability.

3.3.1.2. Sets of linear chains. This graph topology in-
cludes graphs formed by a set of disjoint sub-graphs, each of
which is either a linear chain or a solitary node. The exe-
cution of subtasks within a particular linear chain must be
completed in the specified order; however, no temporal
constraints exist between the chains. Algorithm 1 depicts a
probabilistic program for constructing these sets of chains.
In line 2, the first active linear chain is initialized as an
empty sequence. In line 3, a random permutation of the
nodes is produced. For each element a € P, line 5 adds the
element to the last active chain. Lines 6 and 8 ensure that
after each element, either a new active chain is initiated
(with a probability of p,,,,) or the old active chain continues
(with a probability of 1 — p,4).

3.3.1.3. Forest of sub-tasks. This graph topology in-
cludes forests (i.e., sets of disjoint trees). A given node has
no temporal constraints with respect to its siblings, but must
precede all its descendants. Algorithm 2 depicts a proba-
bilistic program for sampling a forest. Line 2 creates P, a
random permutation of the subtasks. Line 3 initializes an
empty forest. In order to support a recursive sampling al-
gorithm, the data structure representing forests is defined as
an array of trees, F. The i tree has two attributes: a root
node, F[i].root, and a “descendant forest,” F[i].descendant,
in which the root node of each tree is a child of the root node
defined as the first attribute. The length of the forest,
F length, is the number of trees included in that forest. The
size of a tree, F|i].size, is the number of nodes within the
tree (i.e., the root node and all of its descendants). For each
subtask in the random permutation P, line 5 inserts the given
subtask into the forest as per the recursive function In-
sertintoForest defined in lines 7 through 13. In line 8, an
integer 7 is sampled from a categorical distribution, with
{1,2,..., F.length + 1} as the possible outcomes. The
probability of each outcome is proportional to the size of the
trees in the forest, while the probability of F.length + 1
being the outcome is proportional to N,.,, a user-defined
parameter. This sampling process is similar in spirit to the
Chinese restaurant process (Aldous (1983)). If the outcome
ofthe draw is F.length + 1, then a new tree with root node a
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Figure 1. Illustrative examples of directed acyclic graphs of precedence constraints over four sub-tasks as sampled by our priors.

is created in line 10; otherwise, InsertIntoForest is called
recursively to add a to the forest F|[i].descendants, as per
line 12.

Algorithm 2 SampleForestofSubtasks

1: function SAMPLEFORESTOFSUBTASKS(£2, Ny cvs)
P < random permutation(£2)
F
fora € P do
F =InsertIntoForest(F,a)
return F
function INSERTINTOFOREST(F, a)
i < Categorical ([F[1].size, F (2] size, . . ., F[F length].size, Npew])
if ¢ = JF .length + 1 then
Create new tree F [F .length + 1].root = a
else
Fi].descendants = InsertIntoForest(F [¢].descendants, a)

return F

Figure 1 depicts illustrative examples of the directed acyclic
precedence graphs sampled using the priors. Three prior
distributions based on the four probabilistic programs are
described in Table 1. In all the priors, @g/opa a0 @eyenniar are
sampled using SampleSubset(7, ps) and SampleSubset(€2,
Pr), respectively.

3.3.2. Likelihood function. The likelihood distribution,
P({[a];}| ¢, {3:}), is the probability of observing the tra-
jectories within the dataset given the candidate specifica-
tion. It is reasonable to assume that the demonstrations are
independent of each other; thus, the total likelihood can be
factored as follows:

Ndemo

P({[a];}] p. {»:}) = l;[1 P(p)P(la]| 0.y1) (D)

The probability of observing a given trajectory dem-
onstration is dependent upon the underlying dynamics of
the domain and the characteristics of the agents producing
the demonstrations. In the absence of this knowledge, our
aim is to develop an informative, domain-independent
proxy for the true likelihood function based only on the
properties of the candidate formula; we call this the
“complexity-based” (CB) likelihood function. Our ap-
proach is founded upon the classical interpretation of
probability championed by Laplace and Dale, 1951, which
involves computing probabilities in terms of a set of equally
likely outcomes. Let there be N,,,,; conjunctive clauses in ¢;
there are then 2V possible outcomes in terms of the truth
values of the conjunctive clauses. In: the absence of any
additional information, we assign equal probabilities to each
of the potential outcomes. Then, according to the classical
interpretation of probability, for candidate formula ¢,
(defined by subsets 71, W1,, and W3,1) and ¢, (defined by

Table 1. Prior definitions and hyperparameters.

Prior  @order Hyperparameters
Prior 1 RandomPermutation(€2) PG, PE

Prior 2 SampleSetsOfLinearChains(€), ppar) PG, PE> Ppare
Prior 3 SampleForestofSubTasks(2, N,e,) PG> Pe> Nuew

subsets 72, Wy,, and W3,) the likelihood odds ratio if y; =
1 is defined as follows:

2 Neonjy 2\Tl\+|W1,|+|Wzl|
= , )=
Pl g) _ | 75 el AT
P(all 92) | gvay, il | w4
=  [alo,
€ €

Here, a finite probability proportional to € is assigned to a
demonstration that does not satisfy the given candidate
formula. With this likelihood distribution, a more-restrictive
formula with a low prior probability can gain favor over a
simpler formula with higher prior probability given a large
number of observations that would satisfy it. However, if the
candidate formula is not the true specification, a larger set of
demonstrations is more likely to include non-satisfying
examples, thereby substantially decreasing the posterior
probability of the candidate formula. The design of this
likelihood function is inspired by the size principle de-
scribed by Tenenbaum (2000).

A second choice for a likelihood function, inspired by
Shepard (1987), is defined as the SIM model by Tenenbaum
(2000); we call this the “complexity-independent” (CI)
likelihood function, and it is defined as follows:

P(l]| g) = { L—e if ldFe ©)

€, Otherwise

We must define likelihood functions for both accept-
able and unacceptable demonstrations. Note that the
likelihood function defined by equation (8) produces a
relatively larger likelihood value if the candidate formula
correctly classifies the demonstration, and a very small
likelihood value if it does not. Following the classical
probability argument as before, with 2Yv conjunctive
clauses in a candidate formula, there are 2Vev possible
evaluations of each of the individual clauses that would
result in the given demonstration not satisfying the
candidate formula. Thus, the likelihood function for y;, =
0 is defined as follows:
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An equivalent SIM likelihood function for examples
with y; = 0 is defined as follows:

P(la)| p) = { R (an

€, Otherwise

Note that for larger values of N,,;, and N, and page a
negative label y; = 1, the difference between the CI and the
CB likelihood function is very small.

Vazquez-Chanlatte et al. (2018) proposed a maximum
likelihood estimation framework for specifications ex-
pressed informal logics. Their approach for computing the
maximum entropy estimate results in the likelihood function
being proportional to the ratio of the observed satisfaction
rate of a candidate specification to the satisfaction rate
resulting from randomized behavior. Our approach to ap-
proximating the likelihood function corresponds to their
result if the observed satisfaction rate is assumed to be close
to unity, and the random satisfaction rate is computed as-
suming that each of the clauses is satisfied as a random
outcome of a Bernoulli trial with balanced outcome
probabilities.

3.3.3. Inference. We implemented our probabilistic model
in webppl (Goodman and Stuhlmiiller (2014)), a Turing-
complete probabilistic programming language. The hy-
perparameters, including those defined in Table 1 and e,
were set as follows: pg, p = 0.8; ppaye = 0.3; Nyeyy = 5; €=
4 x log(2) x (|]T + ||+ 0.5|€2(|€2] — 1)). These values were
held constant for all evaluation scenarios. The equation for €
was defined such that evidence of a single non-satisfying
demonstration would negate the contribution of four sat-
isfying demonstrations to the posterior probability. The
posterior distribution of candidate formulas is constructed
using webppl’s Markov chain Monte Carlo (MCMC)
sampling algorithm from 10,000 samples, with 100 samples
serving as burn-in. The posterior distribution is stored as a
categorical distribution, with each possibility representing a
unique formula. The maximum a posteriori (MAP) candi-
date represents the best estimate for the specification as per
the model. We ran the inference on a desktop with an Intel
17-7700 processor.

While the inference procedure is handled directly by
webppl, we provide a brief example of the MCMC sampling
algorithm using the Metropolis-Hastings acceptance crite-
rion. Consider a domain with two subtasks w; and w,. The
demonstrator provides two demonstrations in the
dataset along with the acceptability labels, D = {([a], ¥1),
([@]2, ¥2)}. Let’s assume that in both demonstrations, the
demonstrator completed the subtask w; before subtask w, in
the first demonstration and w, before w; in the second.

Further, let’s assume that both demonstrations were labeled
acceptable. For brevity, let’s assume that all positional
propositions, x;, always hold in this case.

Further, assume that we select Prior 2, which induces a
prior probability distribution P(¢) over the hypothesis space
as per the probabilistic program described in Table 1. To
estimate the posterior belief conditioned on observing the
dataset P(¢|D), we use approximate inference by sequential
sampling from a proposal distribution (in this case, the prior
distribution) and either accepting or rejecting the new
sample.

We begin with an initial sample from the prior distri-
bution, for example, ¢; = F w; AF w», i.e., the agent must
complete both subtasks wy, and w, but in any order. The
posterior probability, P(¢;|D « P(p,)P(D|g,). By Equation
(7). P(D|g1) = P([ali|¢1, y))P([al2|@1, y2). The individual
demonstration likelihoods are calculated per Equations (8)
and (10) as applicable.

At the next iteration of the MCMC algorithm, let the
sample be ¢, = Fw; AFw, A—w, Uw,, which encodes the
requirement of the demonstrator to complete both w, and
w,, but enforces the ordering constraint that w; must pre-
cede wp. As per the Metropolis-Hastings criterion
(Metropolis et al., 1953; Hastings, 1970), this sample is
accepted with the probability defined as follows:

Thus if the demonstration [a]; is acceptable, and [a], is
not, then the sample ¢ — 2 will be accepted as long as P(¢,)/
P(¢, > P(p,|D)/P(p,| D). Note that as per the size principle
encoded in the likelihood function, the likelihood of ¢, is
greater than that of ¢,. However, if both demonstrations
were acceptable, P(¢|D)/P(p,|D) > 1, therefore ¢, is very
likely to be rejected as the next sample.

The MCMC algorithm evaluates a fixed number of new
sample proposals. The burn-in parameter, n,,,,,, discards the
first ny,,,, samples for estimating the posterior distribution.
Finally, the frequency of the accepted samples is used to
estimate the posterior belief distribution.

4. Evaluations

We evaluated the performance of our model across three
diverse domains. First, we developed a synthetic domain
where an agent must navigate a 2D space with fully ob-
served threats and waypoints. In each mission, the agent
must visit a set of waypoints while respecting temporal
precedence constraints, and it must avoid a subset of the
threats. This domain was chosen so that many satisfying
demonstrations can be readily generated for various envi-
ronment configurations and ground truth specifications.
Such an evaluation across a diverse set of specifications is
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especially important for research into specification infer-
ence and policy explanation. We initially proposed the
synthetic domain (Shah et al., 2018), and it has been further
utilized by Sobti et al. (2023) for their extension of spec-
ification inference with optimal experiment design incor-
porated into the data generation process and by Sanneman
et al. (2021) for explaining autonomous systems policy for
temporal tasks.

Next, we applied our model to the real-world task of
setting a dinner table. Such tasks are characteristics of
manipulation tasks performed by a single agent in a house-
scale environment. This task is a proxy for multi-step
manipulation tasks that are common use cases for robots
in domestic assistance or manufacturing. It is also a task
familiar to a non-expert user demographic; thus, high-
quality satisfying demonstrations are readily available.
Therefore, the task of setting a dinner table has been widely
studied in prior works on LfD (Toris et al, 2015;
Ahmadzadeh et al., 2017; Rana et al., 2018).

Finally, we evaluated our approach within the domain of
evaluation of large-force exercises (LFE). Large-force ex-
ercises are simulated air-combat games used to train combat
pilots. Any given LFE will typically include multiple air-
craft of heterogenous capabilities and will only feature
sparse coordination between friendly aircraft. In addition to
cooperative aircraft, these domains include adversarial
aircraft and ground forces. Such large-scale multi-agent
decentralized domains are understudied in robotics but
are common in large-scale systems such as disaster re-
sponse, assembly line design and planning, and logistics.
These domains are high-impact domains for deploying
robots and other autonomous coordination systems, and our
proposed approach can be valuable in inferring team-level
objectives from previous mission execution data. In this
paper, we developed a simulation environment for large-
force exercises using join-semi automated forces (JSAF), a
constructive software environment. We used our proposed
specification inference model to infer mission objectives
using mission execution data, and annotations from a
subject matter expert (in this case, the mission commander
who designs the scenario and debriefs and evaluates the
participating pilots).

4.1. Metrics

The evaluation metrics used to test the quality of the inferred
specifications depend upon whether the ground-truth
specifications are known. For domains in which it is
known (the synthetic and dinner table domains), the ground-
truth specification is defined using subsets 7 , W, and W,
(as per Equations 3, 4, and 5), and a candidate formula ¢ is
defined by subsets 7, Wy, and W,. In such cases, we define
the degree of similarity using the Jaccard index (Jaccard,
1912) as follows:

S uwiuw ingzuw,uws) |
- * % %
| {7 UW, UW, JU{rUW UW,}|

L(p) (13)

The maximum possible value of L(p) is one such that
both formulas are equivalent. One key benefit of our ap-
proach is that we compute a posterior distribution over
candidate formulas; thus, we report the expected value of
E(L(p)) as a measure of the deviation of the inferred
distribution from the ground truth. We also report the
maximum value of L(p) among the top 5 candidates in the
posterior distribution. We classify the inferred orders in W,
as correct if they are included in the ground truth, incorrect if
they reverse any constraint within the ground truth, and
“extra” otherwise. (Extra orders over-constrain the problem,
but do not induce incorrect behaviors.)

For the LFE domain, where the ground-truth specifi-
cations are unknown but SME annotations for whether the
mission objectives were accomplished are provided for the
dataset, we use the weighted F1 score for both “achieved”
and “failed” labels. This score is evaluated on a test set that
is held out while using the remaining examples in the dataset
to infer the specifications. We also measure the true negative
rate in a setting where the training set only contains positive
examples, where the mission objectives were achieved by
the friendly forces, while the test set contained a mixture of
positive and negative mission executions.

4.2. Synthetic domain

In our synthetic domain, an agent navigates within a two-
dimensional space that includes points of interest (POIs) to
visit and threats to avoid. The state of the agent x represents
the position of that agent within the task space.

Let 7 = {1, 2..., Byyeas} represent a set of threats po-
sitioned at x7,Vi € 7, respectively. A proposition 7; is as-
sociated with each threat location i € tau such that:

. true,

"7 false,

The proposition 77, holds if the agent is not within the
avoidance radius €,,.4; of the threat location.

Let Q = {1, 2, ..., npos} represent the set of POIs po-

sitioned at xp,Vi € €. A proposition w; is associated with
each POI such that:

o — true,

"7 false,

w; evaluates as true if the agent is within a tolerance radius
€Epor of the POL.

Finally, propositions z; ¥V i € € are conditions propo-

sitions that denote the accessibility of the POI i, and are
defined as follows:

||x - xTiH = Eihreat
otherwise

(14)

llx — xp,|| < €por
otherwise

(15)
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Jjsuch that||xp, — Xy, || < €threar
otherwise

false,
T = { true, (16)
m; evaluates as false if the POI i is inside the avoidance
region of any of the threats.

The agent can be programmed to visit the accessible
POIs and avoid threats as per the ground-truth specification.
The ground-truth specifications are stated by defining the
following: a set T =7 that represents the subset of threats
that the agent must avoid; a set W; =€ that represents the
subset of POIs the agent must visit; and the ordering
constraints defined by W,, a set of feasible pairwise pre-
cedence constraints between the POls.

Here, we demonstrate the results of applying our in-
ference model to three scenarios with differing ground-truth
specifications. Each scenario had five threats, and five
waypoints, but the specification over the order in which the
waypoints were to be visited varied in each scenario. In:
Scenario 1, all waypoints had to be visited in a particular
order. In: Scenario 2, there were precedence constraints over
a subset of waypoints, but not all of them. In: Scenario 3,
there were no ordering constraints at all. These scenarios
were specifically selected to examine the inductive biases
induced by each of our priors in cases where the ground
truth specification was fully constrained, partially con-
strained and most relaxed respectively.

4.2.1. Scenario 1. In Scenario 1, we placed five threats in
the task-domain, and their positions were sampled from a
uniform distribution for each demonstration. There were
four points of interest, labeled 1,2,3,4, and their positions
were fixed across all demonstrations. The agents were re-
quired to visit the POIs in a fixed order ([1,2,3,4]). Example
trajectories from this scenario are depicted in Figure 2.
The posterior distribution was computed using prior 1
(defined in Table 1), with both CB (Equation 8) and CI
(Equation 9) likelihood functions. The expected and
maximum values among the top 5 a posteriori formula
candidates of L(p) are depicted in Figure 3. We observed
that the CB likelihood function performed better than the CI
likelihood function at inferring the complete specification.
Using the CI function resulted in a higher posterior prob-
ability assigned to formulas with high prior probability that
were satisfied by all demonstrations. These tended to be
simple, non-informative formulas; the CB function assigned
higher probability mass to more-complex formulas that
explained the demonstrations correctly. Figure 3(b) depicts
the number of unique formulas in the posterior distributions.
The CB likelihood function resulted in posteriors being
more peaky, with fewer unique formulas as training set size
increased; this effect was not observed with the CI function.
The posterior distribution was also computed using
priors 2 and 3 with the CB likelihood function. The ex-
pected and maximum values among the top 5 a posteriori
formula candidates of L(¢) are depicted in Figure 4(a). Prior
3 aligned better with the ground-truth specification with
fewer training examples. With a larger training set, prior

2 recovered the exact specification, while prior 3 failed to do
so. Figure 4(b) depicts the expected value of the correct and
extra orders in the candidate formulas included in the
posterior distribution. The a priori bias of prior 3 toward
longer chains is apparent, as it recovered more correct
orders with fewer training demonstration in comparison to
prior 2. Prior 2 recovered all correct priors with more
training examples; however, prior 3 failed to do so with
30 training examples.

4.2.2. Scenario 2. Scenario 2 contained five POIs
1,2,3,4,5 and five threats. Like Scenario 1, the threat po-
sitions were sampled uniformly for each demonstration. All
the POls, if accessible, had to be visited. A partial ordering
constraint was imposed such that POIs [1,3,5] had to be
visited in that specific order, while POIs {2, 4} could be
visited in any order. Some demonstrations generated for
Scenario 2 are depicted in Figure 5.

For Scenario 2, the posterior distribution was computed
using priors 2 and 3, as the ground-truth specification did
not lie in support of prior 1. The expected and maximum
values among the top 5 formula candidates of L(¢p) are
depicted in Figure 6(a). Given a sufficient number of
training examples, both priors were able to infer the
complete formula; with 10 or more training examples, both
priors returned the ground-truth formula among the top
5 candidates with regard to posterior probabilities.
Figure 6(b) depicts the correct and extra orders inferred in
Scenario 2. Prior 3 assigned a larger prior probability to
longer task chains compared with prior 2, but both priors
converged to the correct specification given enough training
examples.

4.2.3. Scenario 3. Scenario 3 included five threats and five
POIs labeled {1, 2, 3, 4, 5}, respectively. The threat po-
sitions were uniformly sampled for each scenario. Each of
the POlIs, if accessible, had to be visited; however, there
were no constraints placed on the order in which they were
visited. Figure 7 depicts some of the example
demonstrations.

Again, the posterior distribution was computed using
priors 2 and 3. The expected and maximum values among
the top 5 formula candidates of L(p) are depicted in
Figure 8(a). In: this scenario, both priors performed equally
well with regard to recovering the ground-truth specifica-
tion. With 10 or more demonstrations, both priors returned
the ground-truth specification as the maximum a posteriori
estimate. The expected value of the extra orders contained in
the posterior distributions is depicted in Figure 8(b). Once
again, the tendency of prior 3 to return longer chains is
apparent, as more formulas in the posterior distribution
returned a greater number of extra ordering constraints as
compared with prior 2.

4.2.4. Complexity considerations. The runtime for MCMC
inference is a function of the number of samples generated,
the number of demonstrations in the training set, and
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Figure 2. Example trajectories from Scenario 1. Green circles denote the POIs; red circles denote the avoidance zones of threats.

demonstration length. Scenarios 1 and 2 required an average
runtime of 10 and 90 min for training set sizes of 5 and 50,
respectively.

TempLogIn (Kong et al., 2017) required 33 min to
terminate with three PSTL clauses. For all the scenarios, the
mined formulas did not capture any of the temporal be-
haviors in Section, indicating that additional PSTL clauses
were required. However, with five and 10 PSTL clauses, the
algorithm did not terminate within the 24-h runtime cutoff.
Scaling TempLogIn to larger formula lengths is difficult, as
the size of the search graph increases exponentially with the
number of PSTL clauses, and the algorithm must evaluate
all formula candidates of length n before candidates of
length n + 1.

4.2.5. Discussion. Our experiments within the synthetic
domain indicate our model’s capability of inferring a variety
of ground-truth specifications with different ordering con-
straints. The comparison between CI and CB likelihood
functions indicated that a likelihood model that followed the
size principle (Tenenbaum, 1999) was key to inferring the
correct task specifications inductively. Further experiments
comparing Priors 2 and 3 over three scenarios with different

ordering constraints indicated the difference in inductive
biases encoded within the prior distributions, but more
importantly, the experiments also demonstrate the prior
biases can be overruled with adequate evidence from
observed data.

4.3. Dinner table domain

We also tested our model on a real-world task: setting a
dinner table. This task featured eight dining set pieces that
had to be organized on a table while the demonstrator
avoided contact with a centerpiece. Figure 9(a) depicts each
of the final configurations of the dining set pieces, de-
pending upon the type of food served. The pieces placed on
the table were varied for each of the eight configurations;
however, the positions of the pieces remained constant
across all final configurations. A total of 71 demonstrations
were collected, with six participants providing multiple
demonstrations for each of the four configurations.
(Figure 10)

The eight dinner set pieces included a large dinner plate,
a smaller appetizer plate, a bowl, a fork, a knife, a spoon, a
water glass, and a mug; the set of pieces is represented by
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Figure 3. (a) depicts the results from Scenario 1, with the dotted
line representing the maximum possible value of L(¢). (b) shows
the number of unique formulas in the posterior distribution.

Q. Each piece was tracked with a motion-capture system
over the course of the demonstration, with the pose of an
object i € Q in the world frame represented by T IQ. In
addition, the pose of the wrists of the demonstrators 7',
and T, were also tracked throughout the demonstration.
We defined propositions that tracked whether an object
was in its correct position or whether a demonstrator’s
wrist was too close to the centerpiece using task-space
region (TSR) constraints proposed by Berenson et al.
(2011).

The origin for each TSR constraint is located at the
desired final position of each object. The pose T 8’ rep-
resents the transform between the origin frame and the
TSR frame for the object, i. The bounds for B; represent
the translation and rotational tolerances of the constraint.
Finally, P; represents the set of poses in the TSR frame
that fall within the tolerance bounds. The pose of object
i with respect to the TSR frame is given by T =

(TVOV[)_1 T?. A proposition w; is associated with object i as
follows:

(a)1.2
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Figure 4. (a) depicts the results from Scenario 1 using priors 2 and
3, with the dotted line representing the maximum possible value
of L(p). (b) depicts the expected value of the number of correct
and extra orders in the posterior distribution.

T P
otherwise

. {true, an
false.

Thus, the proposition w; evaluates as true if the pose of
object i satisfies the TSR constraints, and false otherwise.

A TSR constraint is also associated with the centerpiece,
where TY represents the pose of the centerpiece with respect
to the world frame, and the bounds of the constraint are
defined by B, with P, representing the set of poses that fall
within the tolerances. The poses of the demonstrator’s wrists
with respect to this TSR frame are given by
T; forie{1,2}. A proposition 7. is associated with the
centerpiece, and is defined as follows:

false,
T, =
true,

7. evaluates as false if either of the wrist poses falls within
the TSR bounds, and evaluates as true otherwise.

Finally, condition propositions z; V i € ) encode
whether the object i must be placed. Their values are set
prior to the demonstration and held constant for its duration.
These propositions encode the fact that serving certain

T,, €PNT,,cP,

otherwise

(18)
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Figure 5. Example trajectories from Scenario 2. Green circles denote the POIs; red circles denote the avoidance zones of threats.

courses during a meal requires specific placement of certain
dinner pieces.

Based on the propositions defined above and the
configurations of the dinner table, the ground-truth
specifications of this task are as follows: the demonstra-
tor’s wrists should never enter the centerpiece’s TSR re-
gion (global satisfaction); if =z; is true, then the
corresponding dinner piece must be placed on the table
(eventual completion); and the large plate must be placed
before the smaller plate, which in turn must be placed
before the bowl (ordering). We constructed the posterior
distributions over candidate specification using priors
2 and 3 by incorporating subsets of the training demon-
strations of varying sizes, and evaluated the similarity
between the inferred specifications and the ground truth
using the expected and maximum values among the top 5 a
posteriori candidates of the metric L(p).

With prior 2, our model correctly identified the ground
truth as one of the top 5 a posteriori formula candidates in
all cases. With prior 3, the inferred formula contained
additional ordering constraints compared with the ground
truth. Using all 71 demonstrations, the MAP candidate
had one additional ordering constraint: that the fork be
placed prior to the spoon. Upon review, it was observed
that this condition was not satisfied in only 4 of the
71 demonstrations.

4.4. Evaluating large force exercises

Large-force exercises (LFE) are combat flight training
exercises that involve multiple aircraft groups, with each
group playing a designated role in the completion of the
mission. Evaluating a LFE execution is a challenging task
for the mission commander. The raw state-space of the
domain includes the navigation data for each aircraft in-
volved in the scenario (up to 36 aircrafts were included in
the scenarios we simulated), along with configuration set-
tings for each of those aircrafts (weapon stores, weapon
deployments, etc.) and outcomes of combat engagements
that occur throughout the scenario. The mission commander
must distill this time-series and evaluate the mission based
on multiple output modalities. He or she must first identify
the transition points between predetermined scenario pha-
ses, then evaluate the overall success of the mission’s ex-
ecution in terms of a finite number of predetermined
objectives. Evaluation of the mission objectives depends not
only upon the final state of the scenario, but also on the
behavior of the aircrafts throughout the mission, thus
making LTL a suitable grammar for representing mission
objective specifications.

We evaluated the capabilities of our model to infer LTL
specifications that match a mission commander’s evalua-
tions of mission objective completion. In: this section, we
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Figure 6. (a) indicates the L(p) values for Scenario 2, and (b)
depicts the correct and extra orderings inferred in Scenario 2.

The dotted lines represent the number of orderings in the true
specification.

begin by describing the nature of the offensive counter air
(OCA) mission that serves as the subject of our study. Next,
we describe how these missions are evaluated by experts,
and how the stated mission objectives are well-suited for use
with the temporal behavioral templates we use in our
candidate formulas. Finally, we describe the results obtained
when applying our model to the LFE domain dataset.

4.4.1. LFE scenario description. Each LFE for the OCA
mission we modeled consists of 18 friendly aircrafts and a
variable number of enemy aircrafts and ground-based
threats. Among the friendly aircrafts, there are eight es-
cort aircrafts that are capable air-to-air fighters, eight SEAD
(suppression of enemy air defenses) aircrafts capable of
attacking ground-based threats, and two strike aircrafts that
carry the ammunition that must be deployed in order to
attack a designated ground target within a time-on-target
(TOT) window. The aircrafts’ starting positions during a
typical scenario are depicted in Figure 11. The role of the
mission commander is to debrief the participants once a
LFE scenario execution is completed. During debriefing,
the LFE-OCA scenario is segmented into four phases by
design as follows:

e FEscort Push

e Strikers Push
¢ Time-On-Target (TOT)
* Egress

The mission commander must identify the times that
correspond to the transitions between these mission phases,
and also provide an assessment of whether the following
three mission objectives were achieved:

MO1: Gain and maintain air superiority.
MO2: Destroy an assigned target within the TOT
window.

® MO3: Friendly attrition should not exceed 25%.

Each of the mission objectives is a Boolean-valued
function of the raw state-space of the LFE scenario, and
the mapping between them is not explicitly known. Inputs
from subject matter experts (SMEs) were also utilized to
represent the mission execution in terms of certain Boolean
propositions over which we can apply our probabilistic
model. The propositions were defined as follows:

1. Enemy aircraft attrition (50%, 75%, 100%) (three
propositions).

Either strike aircraft fired upon.

Either strike aircraft shot down.

Last munition released by strikers.

Strike aircrafts flying in on-target flight phase.
Assigned target hit.

Friendly aircraft attrition (25%, 50%, 75%) (three
propositions, each turn false if the corresponding at-
trition is reached).

Nk

In order to generate realistic demonstrations of how the
different executions unfold, the scenarios were defined in
Joint Semi-Automated Forces (JSAF)—a constructive
environment capable of simulating realistic aircraft be-
havior. The data collected for each demonstration in-
cluded the position, speed, attitude, and rates of each of
the aircrafts (both friendly and hostile); the individual
mission phase of each aircraft (a discrete set of phases by
which the aircraft specific mission timeline can be la-
beled); and the firing times, designated targets, detonation
times, and outcomes of each weapon deployment over the
course of the scenario. The mapping from the collected
data to the Boolean propositions stated above is well
defined.

In order to apply our probabilistic model to the LFE
domain, we defined the sets 7 and €. The propositions 7, 2,
and 3 were included in the set 7 as candidates for global
satisfaction. The propositions 1, 4, 5, and 6 were included in
Q as candidates for eventual completion.

4.4.2. Data collection. A total of 24 instances of LFEs were
simulated and included in the dataset. Each instance had a
different outcome with respect to the mission objectives,
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Figure 7. Example trajectories from Scenario 3. The green circles denote the POIs; the red circles denote the threat avoidance zones.

based on the different outcomes of engagements between
friendly and hostile forces. Each scenario was evaluated by
an SME acting as a mission commander performing a
manual debrief. The primary annotation task was to evaluate
whether each of the objectives was successfully achieved
upon mission completion. The secondary annotation task
was to determine the segmentation points among the four
scenario phases on the mission timeline. The segmentation
task is not directly relevant to specification inference, but we
used the labels to simultaneously train a secondary classifier
in one of the baselines.

4.4.3. Benchmarks. The training data for evaluations of
LFEs consists of both acceptable and unacceptable dem-
onstrations, along with the label for that demonstration;
thus, it can be viewed as a supervised learning problem.
We decided to compare the classification accuracy of our
model against a classifier trained with neural-network—
based classifiers trained using gradient-based learning
with both recurrent architectures (Hochreiter and
Schmidhuber, 1997; Graves et al., 2005; Ordonez and
Roggen, 2016), and the state-of-the-art transformer ar-
chitectures (Vaswani et al., 2017) for time series
classification.

Standalone: Here, the recurrent neural network is
trained to jointly optimize the binary cross-entropy for
the classification of each of the three mission objectives.
The loss functions for all the mission objectives are
equally weighted. The recurrent neural networks are
composed of long and short-term memory (LSTM)
modules (Hochreiter and Schmidhuber, 1997), along
with their bidirectional variants (Graves et al., 2005).
Such models were proposed for time series classifica-
tion tasks demonstrating promising performance
(Ordoiiez and Roggen, 2016). Additionally, we adopted
the transformer architecture (Vaswani et al., 2017) by
average-pooling the learned feature embeddings over
the time dimension. These models—hereafter referred
to as “LSTM,” “Bi-LSTM,” and “Transformer,”
respectively—were trained using only the time series of
the propositions as inputs.

Coupled: In prior research, performance improvements
on a primary task have been observed due to simulta-
neous training on a secondary related task (Sohn et al.,
2015). We hypothesized that simultaneously training
the classifier on the secondary task of identifying
scenario phases might improve classification accuracy
compared with a standalone RNN. The loss functions
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used were binary cross-entropy for each mission ob-
jective and categorical cross-entropy for the scenario
phase identification. The overall loss function was an
equally weighted sum of the individual cost functions.
These models were also composed of LSTM modules,
their bi-directional counterparts, and the transformer
models; they are referred to as “LSTM Coupled,” “Bi-
LSTM Coupled,” and “Transformers Coupled,” re-
spectively. These models were trained using the
propositions and collected flight phase data.
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Figure 8. 8(a) indicates the L(p) values for Scenario 3, and (b)
depicts the correct and extra orderings inferred in Scenario 3.
The dotted lines represent the number of orderings in the true
specification.

4.4.4. Evaluations. The classification models were eval-
uated through a four-fold cross-validation wherein the
training dataset was divided into four equal partitions,
with three of the partitions used for training (18 scenar-
ios) and testing performed on the remaining partition
(6 scenarios); this was repeated across all partitions, and
the metrics were averaged across each of the partitions.
We report the F1 score of each classifier. Next, we
evaluated the performance of the best performing neural-
network architecture against our model in a purely in-
ductive learning setting. We partitioned the dataset into
training set consisting of 80% of satisfying mission ex-
ecutions for each of the mission objectives. Corre-
spondingly, the test set consisted of all the failed mission
executions and 20% of the successful task executions. In:
the inductive learning scenario, we report both the
F1 score and the true negative detection rate of the
classifiers. This allows us to evaluate whether the clas-
sifier can learn a meaningful decision boundary from
purely positive examples.

We also applied our model to the entire dataset in order to
analyze which of the propositions were included in the
maximum a posteriori estimate of the specifications. The
overall accuracy of the classifiers was evaluated using the
F1 score on all the predictions for both the possible out-
comes of the mission objectives (“Achieved” and “Failed”)
for each mission objective.

4.4.5. Results. As presented in Table 2, our model out-
performed RNN-based supervised learning models.
However, the transformer based classifier outperformed
our method for MO1 and MO2. At the same time we notice
that contrary to our hypothesis, addition of the secondary
task and features resulted in degraded classification per-
formance. We also notice that with Bayesian specification
inference model, prior 2 outperformed prior 3; and a
possible explanation for this phenomenon is that prior
3 demonstrates an inductive bias towards longer task
chains; therefore, it demonstrated a higher false
negative rate.

We also noticed the tendency of RNN models to collapse
to predicting the most commonly occurring outcome in the
training set for all values of inputs. Thus, the model was
unable to achieve high accuracies even on the training set,

Figure 9. (a) depicts all the final configurations. (b) depicts the demonstration setup. (Photographed by the authors in April 2017.)



The International Journal of Robotics Research 42(14)

1260
(a) 1.2 " . : : .
1 L e
08+ 1
o6} 1
—
047 E[L(y)]:Prior 2 |
E[L(y)]:Prior 3
0.2r Top-5 Max:Prior 2| 7
3 Top-5 Max:Prior 3
0 L 1 1 1 1
30 40 50 60 70
Number of Training Demonstrations
b
(b) 6 . . .
-O-E[#Correct Orders]: Prior 2
57 -~ E[#Extra Orders]: Prior 2
—>—E[#Correct Orders]: Prior 3
4r —>¢—E[#Extra Orders]: Prior 3 |
0]
o3 5
£
=
2o}
1r 7~ —X
0 prD = 3
30 40 50 60 70

Number of Demonstrations

Figure 10. (a) depicts the L(p) values for the dinner table domain,
with the dotted line representing the maximum possible value.
(b) depicts the correct and extra orderings inferred within this
domain; the dotted lines represent the number of orderings in the
true specification.

suggesting that it is not only the small size of the dataset that
results in poor performance. This might indicate that either
greater model capacity or a different model architecture may
be required. The accuracy achieved by the transformer-
based classifier provides evidence for this. The multi-
headed attention mechanism, and positional encodings
can act as event detectors and temporal reasoners, respec-
tively, resulting in high classification accuracy even with
very few training examples.

Table 3 presents the classification performance metrics
for the best performing neural architecture, and the best
performing specification inference model in the inductive
learning setting. Due to the absence of negative examples
from the training set, the transformer model also demon-
strates mode collapse, and always classifies the execution as
having achieved the mission objectives. Thus, while su-
pervised learning models require training from a balanced
set of positive and negative examples, our approach is
capable of learning meaningful LTL specifications even
from an extremely biased training set containing only
positive examples. This is especially relevant for the LFE
domain where there is no guarantee on the availability of
balanced datasets.

Finally, we analyzed the maximum a posteriori formula
returned by our model using prior 2, and the F1 scores
obtained were 0.959, 0.918, and 0.959 for the three mission
objectives, respectively. The compositional structure of the
model allowed us to examine the propositions included in
the formulas and interpret the decision boundaries of the
classifiers; the results were as follows:

1. MO1 (Gain and maintain air-superiority) The
propositions included in @g,s, Were 7, 3, and 2; these
correspond to a maximum allowable friendly attrition

Figure 11. The starting configuration of a large-force exercise scenario. The red aircrafts are the hostile forces, and the blue are friendly

forces.
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Table 2. Weighted F1 scores for both scenario outcomes for each
of the classifiers.

Classifier MO1 MO2 MO3
LSTM 0.53 0.53 0.48
Bi-LSTM 0.53 0.53 0.48
LSTM Coupled 0.53 0.53 0.48
Bi-LSTM Coupled 0.53 0.53 0.48
Transformer 0.86 0.75 0.83
Transformer Coupled 0.79 0.73 0.82
BSI (Prior 2) 0.67 0.71 0.88
BSI (Prior 3) 0.67 0.66 0.88

Bold Values indicate best performance

Table 3. Results weighted F1 score, and true negative detection
rate for inductive learning evaluation.

MOl MO2 MO3
Classifier F1 True -ve F1 True -ve F1 True -ve
Transformer 0.50 0.00 0.50 0.00 0.47 0.00
BSI (Prior 2) 0.44 0.63 0.66 1.00 0.6 0.63

Bold Values indicate best performance

rate of less than 25%, and enforcing the condition that
the strikers were never fired upon or shot down, re-
spectively. (This is consistent with the definition of air
superiority.) The propositions included in @qyepna Were
4, 1, and 5; these correspond to strikers eventually
releasing their weapons, the friendly forces shooting
down 75% of the enemy fighters, and strike aircrafts
eventually reaching their on-target flight phase, re-
spectively. (Again, the included propositions indicate
that gaining air superiority allowed strikers to operate
freely.) Finally, ¢,,4., enforced that friendly forces shot
down 50% of the hostile air threats before strikers re-
leased their weapons.

2. MO2: (Destroy assigned target) The propositions
included in @gp, Were 7 and 3; these represent a
maximum friendly attrition of 50%, and only enforcing
that the strikers were never shot down, respectively.
(Note that this does not enforce the condition that
strikers were never fired upon.) ¢.,cnmq included 1,4, 5,
and 6; these represent eventually shooting down all
hostile aircrafts (which would seem unnecessary),
strikers entering their on-target flight phase, eventually
releasing their weapons—and, most importantly, at-
tacking the assigned target. ¢, 4., enforced the condition
that the friendly aircrafts had to shoot down all hostiles
before the close of the TOT window.

3. MO3: No more than 25% friendly losses: The
propositions in @g,s, included 7, 2, and 3; these cor-
rectly enforced that no more than 25% friendly aircrafts
could be shot down, and also that the strikers were never
shot down or fired upon. @g,e,na included 1, 4, and 5,

representing 75% hostile force attrition, and enforced
that the strikers had to eventually enter their on-target
phase and deploy their weapons. No orders were in-
cluded in the formula. The propositions that enforced
weapon deployment by strikers and requisite hostile
attrition were not required for this objective to be ful-
filled; however, they were included by the model due to
their frequent occurrence with objective completion.
The compositional nature of the model allows the user
to identify constraints that will be easily enforced.

4.5. Discussion

We demonstrated the efficacy of our model in identifying
task specifications in three domains. Our experiments
within the synthetic domain were conducted to vary the
ground-truth formulas with a varying degree of diversity,
thus demonstrating the robustness of the model. Our pro-
posed model correctly identified the ground truth specifi-
cation for each scenario when the model observed an
adequate number of training examples. Our experiments
within the synthetic domain were also instrumental in
highlighting the importance of the size principle
(Tenenbaum, 2000; 1999) in inferring specifications in an
inductive learning setting.

Next, we demonstrated the capability of our proposed
model to identify the ground truth specification for setting a
dinner table. This typical real-world task is often studied in
the context of LfD. The task specifications were inferred
from observations of human volunteers setting the table
with minimal constraints and structure enforced on the
demonstrators. This demonstrates the viability of our model
in inferring specifications for typical single-robot tasks
expected to arise in the context of domestic robotics, service
robotics, and manufacturing robotics in independent task
cells. The synthetic domain and table-setting task were
examples of inferring task specification inductively.

Finally, we evaluated our model in the large force ex-
ercise (LFE) domain, where we collected data streams from
multiple independent decision-making agents at various
levels of abstraction. The task executions were performed in
a multi-agent simulated domain (with no central decision-
making authority). This multi-agent setting is common in
real-world domains such as combat operations, exploratory
expeditions, and disaster response domains, where multiple
agents with heterogenous capabilities operate towards in-
dividual and shared objectives. Our model demonstrated
equivalent alignment with the mission commanders as-
sessment’s compared to the state-of-the-art trajectory
classification approaches based on transformer-based
classification models (Vaswani et al., 2017) when trained
on a mix of acceptable and unacceptable execution traces
through four-fold cross-validation. However, if the training
set only included acceptable mission execution traces, our
proposed model vastly outperformed the transformer
classifier. The added interpretability of the inferred logical
formulas makes our model valuable as a decision-support
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system for mission commanders evaluating such mission
executions.

While we demonstrated the utility of our approach for
real-world-sized problems, there are several open prob-
lems. First, while our approach was only operationalized
for LTL, it applies to any discrete specification grammars
with a fragment defined by templates composed through
conjunctive composition. Currently, we also assume that
the propositions are given to the model; future develop-
ment of this approach would also consider the scenario
where the classifiers that evaluate the truth value of
propositions are inferred simultaneously with the formula
structure using a hierarchical Bayesian approach. Finally,
our approach is further limited in expressivity due to the
user-defined templates. However, a future extension that
extends the template library using the commonly occurring
specification patterns would be an interesting research
direction.

5. Conclusion

In this work, we presented a probabilistic model to infer
task specifications in terms of three behaviors encoded as
LTL templates. We presented three prior distributions that
allow for efficient sampling of candidate formulas as per
the templates. We also presented a likelihood function that
depends only upon the number of conjunctive clauses in
the candidate formula, and is transferable across domains
as it requires no information about the domain itself. Fi-
nally, we demonstrated our model on three distinct eval-
uation domains. On the domains where the ground-truth
specifications were known, we demonstrated the capability
of our model to identify the ground-truth specification with
up to 90% similarity, in both a low-dimensional synthetic
domain and a real-world dinner table domain. In: the large-
force exercise domain, where the ground-truth specifica-
tions are not known, we showed the ability of our model to
align its predictions with those of an expert to a greater
extent than supervised learning techniques. We also
demonstrated our model’s ability to explain its decision
boundaries due to the compositional nature of the formula
template.
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