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• Human preference vector  

• Each arm   with a utility  

• Each query   with a utility difference  

θ ∈ ℝd

z ∈ Z z⊤θ
x x⊤θ  x = z1 − z2

z1 z2

Query  x  {Choice cx ∈ {1, − 1}
Response time tx > 0

Bandit algorithm

Recommended arm  ̂z

If a time budget is exhausted, then terminate.

Goal:   is the best arm 
 .

̂z
z* = arg max

z∈Z
z⊤θ

Estimating   using feedback 
(see contributions 1 and 2).

θ

Integrating utility estimators

into bandit learning


(see panel “Bandit Learning”).

Problem Formulation: Linear Bandit

Research Questions 
1. How to combine response times with choices 

to improve preference learning?

2. Under what conditions do response times 

provide additional value beyond choices?

Question for you … 
Which one would you like to have now?

Short response time 
Long response time 

Strong preference
Weak preference

[1]

The EZ-Diffusion Model [2]
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If using choices (same as Bradley-Terry [4]):
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1
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1 + exp (−cx,i ⋅ x⊤ ⋅ θ )

If using both choices and response times:
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Contribution 1: Utility Estimation Using Both Choices and Response Times 
Estimate  , given a fixed dataset that contains i.i.d. data   for each query  .θ {cx,i, tx,i}i∈[nx]

x ∈ 𝒳

Contribution 2: A Key Insight: 
Response times from queries with strong preferences provide extra 
information beyond choices, which accelerates preference learning.
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EZ-diffusion model confirms the key insight:
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   (utility difference)x⊤θ
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Non-Asymptotic result confirms the key insight:

   (utility difference)x⊤θ
Weak pref.Strong pref. Strong pref.

For each query   with  :

    given a fixed i.i.d. dataset with   choices and response times,

    for any  , if   is sufficiently small and   is sufficiently large,

    then, the utility estimation error satisfies:


 .

x x⊤θ ≠ 0
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ϵ > 0 ϵ nx

ℙ [ x⊤ ̂θ − x⊤θ > ϵ] ≤ 6 exp (−M2
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If using  , then    


If using  ,         then    

̂θ choices, times Mx = 1
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Given a fixed dataset with   choices and response times for each query in  ,

     then, for each arm  , the utility estimation error satisfies:


 .

n 𝒳
z

n (z⊤ ̂θ − z⊤θ) D 𝒩 (0, AVarz)

If using  , then  
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Asymptotic variances confirms the key insight:

(The plot shows an example where all  .)x⊤θ ∈ [−3,3]

   (utility difference)x⊤θ
Weak pref.Strong pref. Strong pref.

Simulation result confirms the key insight:

Experiment: first estimate   based on feedback from 50 

randomly sampled queries, and then output  .
θ

̂z = arg max
z∈Z

z⊤ ̂θ
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Bandit Learning 
Algorithm: Generalized Successive Elimination [3]


• Split the total budget   evenly into   phases.

• For each phase  :


• Compute the experimental design   (a distribution over queries).

• Sample queries according to   till the budget is exhausted.

• Estimate   and eliminate the arms with low estimated utilities.


• Recommend the one arm remaining.


• Hyperparameters

• Elimination parameter   determines that


1.   


2. Only keep the top   arms at the end of each phase.


• Buffer size   determines each phase’s budget  , to 

prevent over-consuming the budget.
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Generalized Successive 
Elimination with  ̂θ choices

Generalized Successive 
Elimination with  ̂θ choices, times

Simulation results based on real-world datasets
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Snack dataset 
(option 1 vs 2) [7]:

Snack dataset 
(yes vs no) [6]:

Foodrisk dataset 
(option 1 vs 2) [5]:

Scan for

full paper

Scan for Shen Li’s website

(I am on the faculty job market!)


