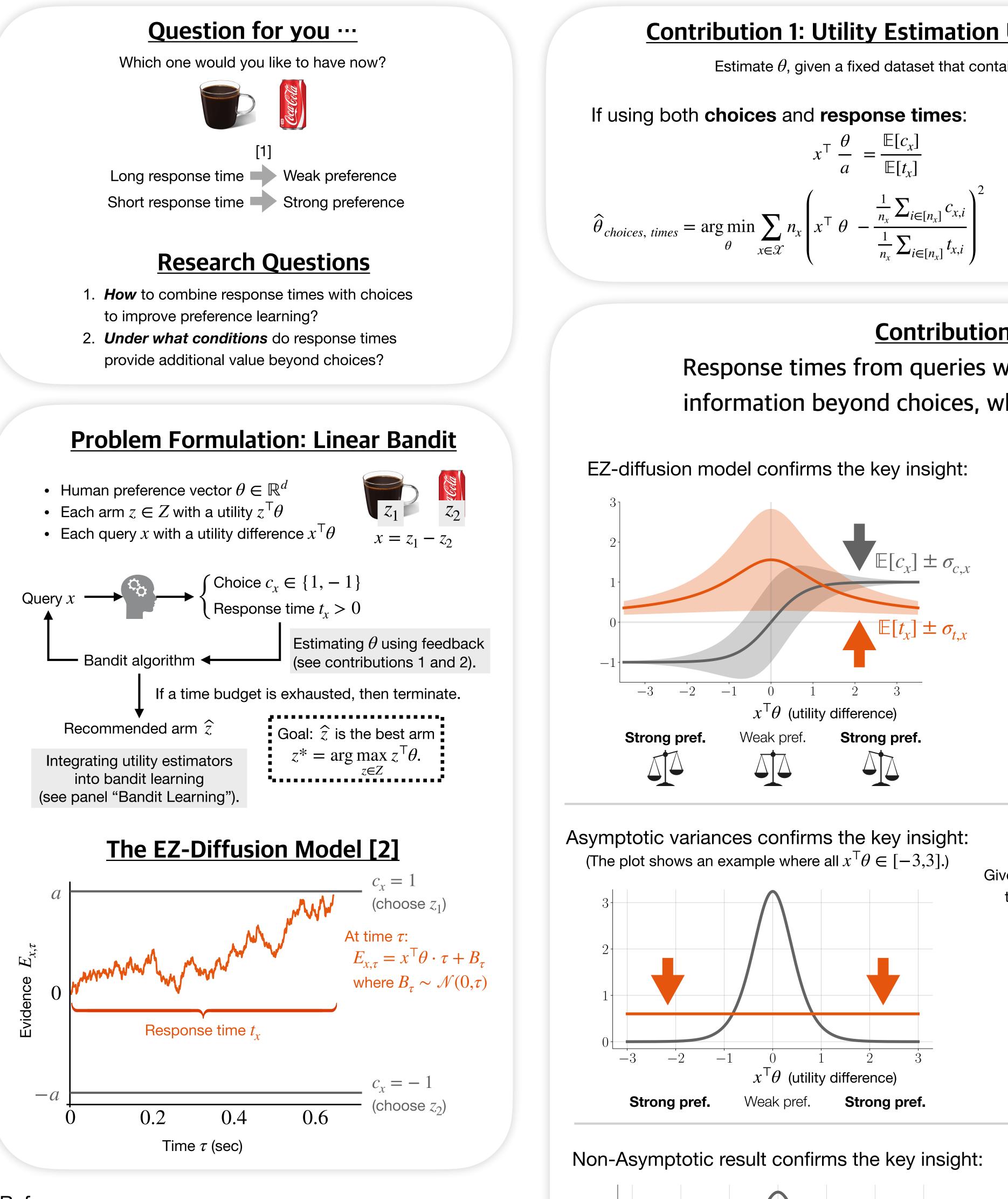
Enhancing Preference-based Linear Bandits via Human Response Time



References

[1] Alós-Ferrer, C., Fehr, E., & Netzer, N. (2021). Time will tell: Recovering preferences when choices are noisy. Journal of Political Economy. [2] Wagenmakers, E. J., Van Der Maas, H. L., & Grasman, R. P. (2007). An EZdiffusion model for response time and accuracy. Psychonomic bulletin & review. [3] Azizi, M. J., Kveton, B., & Ghavamzadeh, M. (2022). Fixed-budget best-arm identification in structured bandits. IJCAI.

[4] Bradley, R. A., & Terry, M. E. (1952). Rank analysis of incomplete block designs: I. The method of paired comparisons. *Biometrika*.

[5] Smith, S. M., & Krajbich, I. (2018). Attention and choice across domains. Journal of Experimental Psychology: General.

[6] Clithero, J. A. (2018). Improving out-of-sample predictions using response times and a model of the decision process. Journal of Economic Behavior & Organization. [7] Krajbich, I., Armel, C., & Rangel, A. (2010). Visual fixations and the computation and comparison of value in simple choice. Nature neuroscience.

Shen Li*, Yuyang Zhang*, Zhaolin Ren, Claire Liang, Na Li, Julie A. Shah

<u>Contribution 1: Utility Estimation Using Both Choices and Response Times</u>

Estimate θ , given a fixed dataset that contains i.i.d. data $\{c_{x,i}, t_{x,i}\}_{i \in [n]}$ for each query $x \in \mathcal{X}$.

$$\mathbb{P}\left[c_{x}=1\right]$$

$$\widehat{\theta}_{choices} = \arg \max_{\theta} \sum_{\substack{x \in \mathcal{X} \\ i \in [n_x]}} \log_{\theta} \left[\frac{1}{1 + 1} \right]$$

Contribution 2: A Key Insight: Response times from queries with strong preferences provide extra information beyond choices, which accelerates preference learning.

0.8-Best-arm identification error 0.4 $\mathbb{P}\left[\widehat{z} \neq z^*\right]$ 0.20.1 1

> All queries have weak pref.

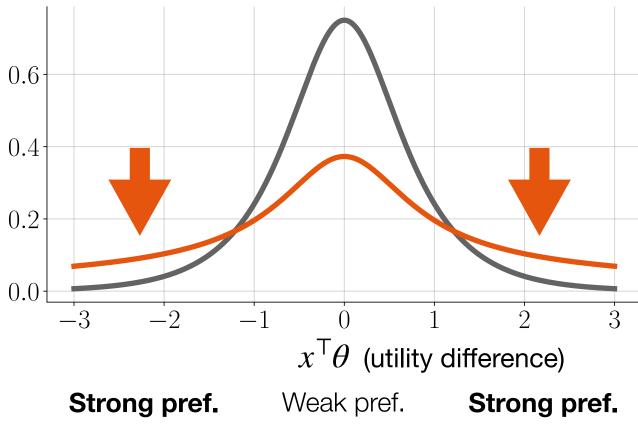
Given a fixed dataset with *n* choices and response times for each query in \mathcal{X} , then, for each arm z, the utility estimation error satisfies:

$$\sqrt{n} \left(z^{\mathsf{T}} \widehat{\theta} - z^{\mathsf{T}} \theta \right)$$

If using $\hat{\theta}_{choices, times}$, then $AVar_z \leq z^{\top}$

If using $\widehat{ heta}_{choices}$,

then AVar_z = z^{\top}



0.6

0.4

0.0

For each query x with $x^{\dagger}\theta \neq 0$: given a fixed i.i.d. dataset with n_r choices and response times, for any $\epsilon > 0$, if ϵ is sufficiently small and n_r is sufficiently large, then, the utility estimation error satisfies:

$$\mathbb{P}\left[\left|x^{\mathsf{T}}\widehat{\theta} - x^{\mathsf{T}}\theta\right| > \epsilon\right] \leq$$

If using $\widehat{\theta}_{choices, times}$, then $M_x =$

If using
$${\widehat heta}_{choices}$$
, the theorem of the second second

