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Abstract

As robots act in the environment, people observe their behaviors and
form beliefs about their underlying intentions and preferences. Although
people’s beliefs often affect their interactions with robots, today’s robot
behaviors are rarely optimized for ease of human understanding. In
this thesis, we contribute studies and algorithms to improve the trans-
parency of robot behaviors for human observers through giving nat-
ural language-based and demonstration-based explanations. Our first
studies aim to understand how people use natural language to clearly
explain their goals of picking up specified blocks in a tabletop manipu-
lation task. We find that the clearest explanations lead people through
the visual search task by identifying highly salient visual features, spa-
tial relations with explicit perspective-taking words with respect to the
blocks on the table. Based on our findings, we contribute state-of-art
graph-based algorithms to automatically generate clear natural language
explanations similar to those found in our study, and optimize those al-
gorithms to demonstrate that they are scalable to realistic robot manip-
ulation tasks. In our second studies, we aim to understand features of
robot demonstrations that allow people to correctly interpret and gen-
eralize robot state preferences in grid world navigation tasks. We iden-
tify critical points along a demonstrated trajectory that convey informa-
tion about robot state preferences - inflection points and compromise
points, and contribute an approach for automatically generating tra-
jectory demonstrations with specified numbers of critical points. We
show that demonstrated trajectories with more inflection points and
fewer compromise points allow observers to more clearly understand
and generalize robot preferences compared to other combinations of
critical points. We conclude the thesis with areas of future work that
can further improve people’s understanding of robot behavior.
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1
Introduction

Robots are deployed to collaborate with humans in many real-world
tasks, such as furniture assembly [Knepper et al., 2013], warehouse au-
tomation [EvereĴ et al., 1995], or meal serving [Ishii et al., 1995] through
various interaction media such as joystick-based teleoperation [Niko-
laidis et al., 2017b], gesture-based teleoperation [Nagi et al., 2015], and
shared autonomy [Javdani et al., 2015].

There are various factors a robot has to consider in making plans, in-
cluding objectives, preference, and constraints. For example, in a park
navigation scenario (the legend is available in Fig. 1.4), a mobile robot
is driving from the start towards the goal position. The robot might
prefer navigating on dirt road (Fig. 1.1), on grass (Fig. 1.2), or on rock
(Fig. 1.3) [Li et al., 2017]. None of these trajectories are straight lines as
humans expect the robot to follow in order to maximize the efficiency
based on rationality principle [Gergely et al., 1995, DenneĴ, 1989, Kame-
wari et al., 2005]. Humans might aĴribute biased causes and make
errors [Tetlock, 1985] in understanding robot behaviors, which might
raises problems like automation surprise [Sarter and Woods, 1997] when
a robot takes an unexpected action due to the misalignments between
robot plan and human understanding of the robot plan [Fisac et al.,
2016].

Figure 1.1: An autonomous car which
prefers navigating on dirt roads is fol-
lowing the trajectory indicated by black
dots [Li et al., 2017].

Figure 1.2: An autonomous car which
prefers navigating on grass is following
the trajectory indicated by black dots [Li
et al., 2017].

Figure 1.3: An autonomous car which
prefers navigating on rock is following
the trajectory indicated by black dots [Li
et al., 2017].

Figure 1.4: The legend for Fig. 1.1, Fig.
1.2, Fig. 1.3 [Li et al., 2017].

One approach to resolve this issue is to develop transparency in robot
behaviors by enabling a robot to provide comprehensible explanations [Seege-
barth et al., 2012, Zhou et al., 2017]. There are multiple media in which
explanations could be transferred from robots to humans.

Language-based explanation requires no extra tools and leaves phys-
ical bodies free for other tasks, reaches multiple agents in various posi-
tions, compensates for visual communication in dark and smoke condi-
tions, is easy to be monitored and recorded [Simon, 1980], effectively in-
fluences human visual perception in multi-modal communication [Lan-
dau et al., 2010], and affectively responds to human emotions [Scheuĵ
et al., 2006].

There are a lot of works on enabling robot to explain themselves
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in natural language. Langley [2016] develop an agent to explain its
decision-making based on the mental and physical situations in the past.
Chakraborti et al. [2017] use multi-model explanations in a prolonged
interaction to reconcile the gap between robot and human world mod-
els with a minimal change to the human world model. In Human-
computer Interaction, a line of research develops intelligibility 1 in context- 1 Intelligibility: the ability of an applica-

tion to explain its own behaviors.aware systems 2 by making the system able to explain its reasonings to
2 Context-aware system: the system
which adapts according to the loca-
tion of use, the collection of nearby
people, hosts, and accessible devices,
as well as to changes to such things
over time. It examines the computing
environment and reacts to changes to the
environment [Schilit et al., 1994].

users to develop human objective understanding, trust and reliance [Lim
et al., 2009, Kulesza et al., 2012, 2013, Bussone et al., 2015] and main-
tain user satisfaction and usability [Dey, 2009]. Rosenthal et al. [2016]
convert visualization to verbalization in natural language to describe
mobile robot navigation experiences. Perera et al. [2016] refine and pre-
dict the variability of robot explanations to different humans through
continued dialog.

These works above mainly focus on explaining the robot decision-
making processes or objective functions, but not explaining the robot
intentions or constraints. In this work, we contribute a corpus collected
from people, evaluate the explanations collected about robot intentions
in a tabletop manipulation scenario, and improve the state-of-art al-
gorithm to enable robots to automatically generate explanations about
their intentions in natural language.

Inspired from human visual and verbal learnings [Standing, 1973], in
addition to language-based explanations, demonstration-based expla-
nations or expressive behaviors could be more effective than language-
based in tasks, such as tying shoes.

People have focused on using robot motion as a demonstration to
expressively convey robot capabilities [Nikolaidis et al., 2017a], robot
learning progresses [Nicolescu and Mataric, 2003], object physical prop-
erties [SciuĴi et al., 2014, Zhou et al., 2017], and robot goals [Gielniak
et al., 2013, Dragan and Srinivasa, 2014, Zhang et al., 2016, Szafir et al.,
2014, Takayama et al., 2011]. Zhang et al. [2015] introduce plan explica-
bility as the ease with which humans associate tasks with robot actions
in the plan and predictability as the ease with which humans to predict
the next task given actions in the previous tasks. Kulkarni et al. [2016]
model explicability as the distances between robot plans and the human
approximation of robot plan.

These works above mainly focus on expressing the static properties
of the robot and related objects, i.e. the system state, but not explain
what the robot is optimizing for, e.g. the cost function in MDP. In this
work, we propose an algorithm to automatically generate demonstration-
based explanations about robot preference in a gridworld navigation
scenario and evaluate our generated demonstrations in a user study.

In the following, I will first talk about a set of user studies we ran to
evaluate the clarity of a language-based explanation in a tabletop robot



manipulation task. Second, I will contribute several techniques to speed
up the state-of-art algorithm for automatically generating clear expla-
nations in natural language. Third, I will propose an algorithm to au-
tomatically generate clear demonstration-based explanations in a grid-
world navigation task. In the end, I will use a user study to evaluate the
clarity of our generated demonstration-based explanations.





2
Evaluating Explanations in Natural Language

1 1 This work is done in collaboration with
Rosario ScaliseIn a tabletop manipulation task, it is critical for a robot to convey its

intention [Tomasello et al., 2005], i.e. the block it is about to pick up,
in Fig. 2.1, so that humans could read [Takayama et al., 2011], under-
stand [Alami et al., 2006b] and anticipate robot motion [Gielniak and
Thomaz, 2011], infer robot intention [Lichtenthäler et al., 2011], avoid
conflicts and effectively collaborate with robots.

Figure 2.1: Herb (Home Exploring
Robotic Butler) [Srinivasa et al., 2010] is
picking up blocks from the tabletop.

Robot intention in this tabletop manipulation scene would be the tar-
get object 2. One way for a robot to communicate its intention with hu-

2 Target object: the particular object ac-
tively involved in the manipulation tasks.

mans is through a referring expression (RE) 3 which is composed by a set

3 Referring expression (RE): a noun
phrase or surrogate for a noun phrase,
whose function in discourse is to identify
some individual objects [Wikipedia,
2016b]

of features. A clear RE is able to refer to the target object and distinguish
it from distractors 4 in the scene.

4 Distractors: the objects that are not the
target object but stay in the same scene
with the target object, which might con-
found the identification of the target ob-
ject.

There is a long line of research in robotics related to communicating
REs, such as “furthest to the right”,“near the back”, and “closest”, for
navigation tasks [Skubic et al., 2004, Blisard and Skubic, 2005, MacMa-
hon et al., 2006, Kollar et al., 2010, Tellex et al., 2011, Howard et al., 2014,
Trafton et al., 2005a]. However, there are fewer studies on the commu-
nication of spatial references 5 for tabletop or assembly tasks [Bisk et al.,

5 Spatial reference: referring to an object
using spatial relations.

2016].
In simple scenes, people tend to use visual features, such as type and

color in their REs for several reasons. Visual features are usually the con-
ceptual gestalt 6 [Deemter et al., 2012] , have a higher perceptual saliency 7

6 Conceptual gestalt: the central features
forming the speaker’s mental representa-
tion of the referent, e.g. color [Deemter
et al., 2012].
7 Perceptual saliency: the ease with
which that the pixels stand out from their
surroundings in a scene [Clarke et al.,
2013].

[Clarke et al., 2013] and codability 8 [Deemter et al., 2012] , and require

8 Codability: the ease with which that at-
tribute can be included in a mental rep-
resentation of an object [Deemter et al.,
2012].

less cognitive efforts from humans [Deemter et al., 2012], For example,
in a robot tabletop manipulation scene as shown in Fig. 2.2, “the yellow
block” is a RE to identify the target block indicated by the red arrow,
where “yellow” is a visual feature - color and “block” is a visual feature
- type.

However, in complex scenes, a RE with just visual features might
fail to distinguish an object from the others. In another robot tabletop
manipulation scene as shown in Fig. 2.3, it is not possible to identify the
target object indicated by the red arrow by just using color and type,
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because there are multiple yellow blocks in the scene. Here “the yellow
block” is an ambiguous RE because it could identify not only the target
object, but also distractors of the target object in the scene.

Figure 2.2: A simple scene for tabletop
manipulation tasks

Figure 2.3: A difficult scene for tabletop
manipulation tasks

Note that most visual features are object properties, which are unary
features. To identify target objects in complex scenes, we can utilize spa-
tial relations, either binary or n-ary, to establish a grounding or certainty
about the semantic relationship between two objects. For example, in
the complex scene Fig. 2.3, an unambiguous RE for the block indicated
by the red arrow would be “the left block among the two yellow blocks
which are in between two blue blocks”. The spatial relations, such as
“left” and “in between two blue blocks” help disambiguate the target yel-
low block and distinguish it from the other blocks. Note that “left” is a
binary spatial relation indicating that the target block is on the left to a
landmark 9 block. Meanwhile, “in between two blue blocks” is a 3-ary 9 Landmark: people refer to non-target

objects which assist disambiguating the
target object from distractors.

spatial relation between the target object and “two blue blocks” as two
landmarks. Therefore, a RE typically distinguishes target objects from
distractors through unary features, e.g. visual features, and binary or
n-ary features, e.g. spatial relations with references to landmarks.

However, even with the use of visual features and spatial relations,
it is still possible to encounter additional ambiguity which originates
from the reference frames. Humans often specify their perspectives 10 to 10 Perspective: the fixed point where the

speaker is issuing a RE.resolve this ambiguity as in the example “the red cup on your right”,
in which “your right” specifies the perspective. Robots that collaborate
with humans in tabletop tasks have to both understand and generate
visual features, spatial relations, and perspectives. We investigate these
key components by collecting a corpus of REs and analyzing them with
clarity.

2.1 Related Work

Visual Feature

Visual Search Our task is to generate natural language used for identi-
fying a particular object in the cluĴered environment, which is a inverse
process to visual search, the task of finding the particular objects based on
information. 11. Wolfe [1994] divides visual search into 2 steps: (1) Pro- 11 Visual search: a human routine vi-

sual behavior to find one object in a vi-
sual world filled with other distracting
items [Wolfe, 1994].

cessing easy information from all locations in parallel; (2) Focusing on
the complex information from a few spatial locations. In the first step,
people respond to different visual stimuli from the scene, e.g. color,
stereoscopic depth, line arrangement, curvature, intersection, and ter-
minator, in different response time determined by their visual salience 12 12 Visual salience: the ease with which

that a pixel or a region within a
scene stands out from their surround-
ings [Clarke et al., 2013].

[Wolfe, 1994].



Visual Salience People react faster to visual features with high visual
salience when searching for an object in a scene with visual cluĴer 13 13 Visual cluĴer or feature congestion: the

variability of features, e.g. color, orienta-
tion, and luminance, in a local neighbor-
hood [Clarke et al., 2013].

[Clarke et al., 2013]. Wolfe [1994] survey many visual features stud-
ied in literatures and rank them in a sequence based on their visual
salience. The partial ranking is object orientation, color, motion, size,
stereoscopic depth 14, binocular lustre 15, vernier offset 16, curvature, 14 Stereoscopic depth: a visual feature in-

dicating the distance from the viewer,
e.g. this object is closest or farthest to
me [Wolfe, 1994].
15 Binocular lustre: If a spot is darker than
the background in the image presented
to one eye and brighter in the other
eye, the perception alternates between
darker and lighter which presented to
each eye [Wolfe, 1994, Wikipedia, 2016a].
16 Vernier offset: the disalignment among
two line segments [Wolfe, 1994].

terminators 17, and intersections.

17 Terminators: e.g. the tip of a line seg-
ment [Wolfe, 1994].

Perspective

When people collaborate together on spatial tasks, they often must take
each other’s perspectives when referring to objects in the environment [Franklin
et al., 1992, Taylor and Tversky, 1996]. In an analysis of 4000 uĴerances
made by NASA astronauts training together for a mission, 25% of the
uĴerances involved perspective takings [Trafton et al., 2005a].

Levelt [1996] categorize perspectives into three types: (1) deictic per-
spective in reference to the speakers’ points of view, e.g. “on my left”;
(2) intrinsic perspective in reference to the objects’ points of view, e.g.
“in front of the car”; (3) absolute perspective in reference to the world
frame, e.g. “north”. Levinson [1996] merge addressee-centered and de-
ictic perspectives into relative perspective in reference to landmarks.

Most work assumes that people always take robots’ perspectives when
giving robots instructions for tabletop [Guadarrama et al., 2013, Misra
et al., 2014] and navigation [Fischer, 2006] tasks. When a person in-
structs a robot to perform a task with some ambiguity, the person prefers
the robot to take the person’s perspective [Trafton et al., 2005b]. In object
identification tasks, people intuitively use robots’ perspectives [Moraĵ
and Tenbrink, 2006]. Conversely, human-human collaboration litera-
ture reveals that solo people with imaginary human partners are uni-
form in taking their partners’ perspectives while people with real hu-
man partners are not [Schober, 1993], indicating that there is no con-
sensus on common perspectives. Hence, in our task where participants
instruct partners siĴing across the table, we analyze and rank different
perspectives the participants have used.

Ambiguity

There are three sources of ambiguity in REs which make them very hard
for human hearers to understand. (1) unknown perspective-taking of
speakers [Levelt, 1996]; (2) ambiguities in target objects, landmarks, and
spatial relations between them [Fischer and Moraĵ, 2001]; (3) ambigu-
ities in applicability regions for large and not mutually exclusive spatial
relations [Moraĵ and Tenbrink, 2006].

In an experiment in which people were asked to write navigation
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instructions to another person, the other person was only able to suc-
cessfully follow 69% of the nearly-700 instructions while the others are
ambiguous [MacMahon et al., 2006]. In a similar study, subjects were
only able to navigate to the final destination 68% of the time [Wei et al.,
2009]. We analyze the effects of general ambiguity and the ambiguity
caused by unknown perspective on the easiness that people can under-
stand the instruction.

Human Partner vs. Robot Partner

Robot is treated as a communication partner who needs more basic in-
structions than a human interlocutor [Fischer and Moraĵ, 2001]. This
is consistent with another study where half of the participants instruct
robots by decomposing the action and describing paths to adapt to as-
sumed robot linguistic and perceptual abilities [Moraĵ et al., 2001]. Se-
niors want a streamlined communication with a task-oriented robot and
do not want to speak to robots the same way they speak to people [Carl-
son et al., 2014]. Therefore, we also investigate the difference between
the way people speak to a robot and to a human partner in our tabletop
manipulation scenario.

2.2 Study 1: Collecting Language Examples

To understand how humans use visual features and spatial relations in
their referring expressions for tabletop manipulation tasks, we collected
a corpus of instructions generated by 100 online participants.

Study design

To collect referring expressions that represents tasks that required ob-
ject referring and perspective taking, we created a set of stimulus im-
ages. Each image represents a configuration with 15 simplified block
objects in different colors (orange, yellow, green, or blue) on a table as
shown in Fig. 2.2. We first generated 14 images of configuration inde-
pendently, each of which included different visual features and spa-
tial relations, such as a single block of one color, pairs of blocks closely
placed, blocks separated from a cluster, and blocks within or near clus-
ters of a single color. Then we placed red-arrow indicators above two
different target blocks independently in each image and ended up with
14 pairs of configuration (28 images of configuration in total).

This stimulus design is chosen to elicit instructions that rely more on
the visual and spatial arrangement of the blocks than their individual
appearance for the purposes of human-robot interaction. In order to



Figure 2.4: Scenes used to elicit spa-
tial references. Online participants were
asked to write how they would instruct
the silhoueĴed figure to pick up the block
indicated with the red arrow. The block
configurations on the left were rated as
the easiest to describe, while the config-
urations on the right were the most diffi-
cult.

capture clear instructions for a potential partner, this task asked partic-
ipants to instruct a hypothetical partner to pick up the indicated block
as though that partner could not see the indication arrow. The partner
(indicated by the silhoueĴed figure in the images) was seated across the
table from the participant viewing the scene. This setup required par-
ticipants to be clear about the target blocks and the perspectives where
they were describing the blocks.

Prior work indicates that people communicate with robots differ-
ently from with other people [Fischer and Moraĵ, 2001, Carlson et al.,
2014, Moraĵ et al., 2001]. Therefore, we varied whether participants
were told that their partner (the silhoueĴe figure) was human or robot.
18 Participants were randomly assigned to either the human or the robot 18 We did not change the visual appear-

ance of the silhoueĴecondition, and this assignment was the same for every stimulus they
saw. The stimuli were otherwise identical across conditions.

We analyze the results with respect to these hypotheses:

H1 People use different words when talking to human and robot. Specif-
ically, people are more verbose, more polite, and use more partner-based
perspective words to human partners than robot partners.

H2 The frequency of words used in all instructions correlates with the
features used in visual search, including color, stereoscopic depth, line
arrangement, curvature, intersection, and terminator [Wolfe, 1994].

H3 Subjective ratings of sentence difficulty correlate with the number
of spatial references required to indicate the target objects.

Study Procedure

We deployed our study through Amazon’s Mechanical Turk19. Each 19 www.mturk.com

participant was randomly assigned a partner condition (human vs robot)
and 14 trials. In each trial, participants were presented with an image,
like the one on the left side of Fig. 2.2, which was randomly chosen from
the two predefined configurations in each of the 14 pairs of configura-
tion. The participants then typed their instructions and rated the diffi-

www.mturk.com
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culty of describing that block on a 5-point scale. For each trial, we also
collected the completion time. After completing 14 trials, participants
were asked (1) if they followed any particular strategies when giving
instructions; (2) how challenging the task was overall; (3) for any addi-
tional comments they had about the task. Finally, we collected demo-
graphics such as age, gender, computer usage, handedness, primary
language (English or not), and experience with robots.

Metrics

We analyze the collected corpus for language features. To analyze the
differences on word choice between human-partner group and robot-
partner group (H1), we computed:

◦ word count: number of words for each instruction.
◦ politeness: presence of the word “please” in each instruction.
◦ perspective: whether the instruction explicitly refers to participant’s

perspective (egocentric), partner’s perspective (addressee-centered),
neither perspective 20 , or unknown perspective (instruction implic- 20 Neither Perspective sentences only use

perspective-independent directional in-
formation. For example, “closer to
you” should be classified as neither
perspective instead of partner perspec-
tive, because it contains a perspective-
independent reference to a landmark,
“you,” but not perspective-dependent re-
lationships such as “on my left” and “on
your right”.

itly refer to some perspectives) (see Table. 2.2 for details) 21.

21 Object-centered perspective is not con-
sidered because blocks are all the same
except color [Levelt, 1996, Levinson,
1996].

Word count and politeness were automatically extracted from the
text. Perspective was manually coded by four raters who coded the
same 10% of the data and iterated until high inter-rater reliability, mea-
sured by averaging the result of pairwise Cohen’s κ tests. The aver-
age κ value for perspective was 0.85, indicating high inter-rater reliabil-
ity. Once this reliability established, the four raters each processed one
quarter of the remainder of the instructions.

Type P1 P2 Example

Participant Perspective + - “the block that is to my rightest.”
“my left most blue block”

Partner Perspective - + “the block on your left”
“second from the right from your view”

Neither Perspective - - “closest to you”
“the top one in a triangle formation”

Unknown Perspective ? ? “to the left of the yellow block”
“the block that is on far right”

Table 2.1: Possible perspectives.
(P1=Participant P2=Partner).

To compare the features used in our corpus with visual search (H2),
we classify words into categories adapted from visual search literature [Wolfe,
1994]. The categories are listed in Table. 2.2 and presented in the order
of word frequency, the number of instructions that contain words from
the category divided by the size of the corpus.

To verify the correlation between perceived difficulty and the num-



Word Category Description

Action An action to perform
Object An object in configuration
Color Color of object

Ordering/Quantity Ordering/Quantization of objects
Density Concentration of objects (or lack of)

PaĴern/Shape A readily apparent formation
Orientation The direction an object faces

Environmental Reference to an object in the environment
Spatial Reference Positional reference relating two things

Perspective Explicitly indicates perspective

Table 2.2: Word categories and their brief
descriptions

ber of required spatial references (H3), we compare the subjective diffi-
culty rating (Likert scale 1 (easy) to 5 (difficult)) to the following objective
measures:

◦ word count: as computed for H1.
◦ spatial reference count: as computed for H2.
◦ ordering and quantity word count: as computed for H2.
◦ completion time: the duration from when a participant loads a new

stimulus to when the participant hits the submit buĴon for his/her
instruction.

2.3 Study 1 Results

In the study, we recruited 120 participants and over-sampled 1680 in-
structions so that we could account for errors in data collection process
and invalid responses. We remove 10 sentences (0.006%) that either do
not refer to any blocks or are otherwise nonsensical. For consistent and
organized analysis, we randomly select 1400 sentences from the remain-
ing 1670 to ensure that each of the 28 configurations has exactly 50 in-
structions divided as evenly as possible between partner conditions. We
analyze the 1400 sentences selected in this manner.

Our data is open-sourced and available online 22. 22 https://personalrobotics.
github.io/collaborative_
manipulation_corpus/

Visual Features

To address our belief regarding the correlations between the visual fea-
tures in our corpus and visual search literature, we analyze how fre-
quently referring expressions contain visual search features. A sum-
mary of the results are in Table. 2.3.

First, a reference to color is used in nearly every instruction, so color
is such a salient feature in our stimuli as well as in visual search. Next,
although orientation, size, and motion are also strongly influential ac-

https://personalrobotics.github.io/collaborative_manipulation_corpus/
https://personalrobotics.github.io/collaborative_manipulation_corpus/
https://personalrobotics.github.io/collaborative_manipulation_corpus/
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Visual Feature Count Frequency

Color 1301 0.929
Ordering/Quantity 498 0.356

Density 456 0.326
PaĴern/Shape 60 0.043
Orientation 1 0.001

Table 2.3: Visual feature frequencies and
feature-included sentence counts over all
1400 sentences ranked from most to least
frequent

cording to visual search literature, they are almost never referenced in
our corpus. This is likely due to the fact that in our study, blocks have
4-way symmetry and are not oriented in any particular direction, have
the same size, and are static [Wolfe, 1994].

Without many other visual indicators, participants frequently referred
to “dense” regions of one particular feature. For example, “edge of ta-
ble”, “end of table”, “side of table”, and “corner of table” in our data
mean the end of an object, which are mapped to the “terminator” feature
in Wolfe [1994]. “Isolated”, “alone”, “apart”, and “solitary” in our data
mean a vacant area with nothing in it. These words could be understood
as the end of all elements, which are mapped to the “terminator” fea-
ture in Wolfe [1994]. “Cluster”, “pair”, “surround”, and “sandwiched”
in our data mean the boundary between multiple regions, which are
mapped to the “intersection” feature in Wolfe [1994]. “Row”, “aligned”,
“column”, “string”, and “stack” in our data mean a line of consistent
features, such as a line of blocks with the same color, which are mapped
to the “line” feature in Wolfe [1994]. “Diamond”, “rectangle”, “trian-
gle”, and “square”, in our data mean a shape of consistent features,
such as a group of blocks which forms a diamond, which are mapped
to the “curvature” feature in Wolfe [1994]. These references are ob-
served in the literature with less consistency than color and orientation
are [Wolfe, 1994].

Finally, although ordering/quantity does not fit the paradigm of vi-
sual search [Wolfe, 1994] as well as the previously mentioned features
did, these words are closely related to the concepts of paĴern/shape and
density. “The third block in the line” and “The second block from the
cluster” are examples respectively. We find high occurrence of order-
ing/quantity words especially in relation to other visual search terms.

In summary, we find that the observed frequency of many categories
of words in our corpus, including color, density, shape, and ordering/quan-
tity, closely matched what we expected based upon the visual search
literature [Wolfe, 1994].



Spatial Reference

Subjective ratings of sentence difficulty correlate with the number of
spatial references required to indicate the target blocks.
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Figure 2.5: The effect of subjective diffi-
culty ratings on word count.

We evaluate the effect of perceived difficulty on word choice in each
instruction by investigating the correlations between subjective rating
of difficulty, overall word count, number of spatial references, number
of order/quantity words, and completion time. We excluded any trials
on which the participant did not provide a subjective rating of difficulty
and two outlier trials for which the response times were greater than 10
minutes, which ended up with 1353 sentences.
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Figure 2.6: The effect of subjective diffi-
culty ratings on completion time.

Because we use ordinal measures in this evaluation (e.g. subjective
difficulty is rated on a 5-point scale), we conduct a Spearman’s rank-
order correlation to determine the relationship among the five metrics
identified. There are statistically significant correlations across all pairs
of metrics (p < 0.01 for all, which accounts for multiple comparisons).

Table. 2.3 details these correlations.

◦ As expected, there is a clear positive correlation (0.528) between word
count and difficulty (Fig. 2.5): easier scenes require fewer words to
describe.

◦ As expected, there is a clear positive correlation (0.508) between com-
pletion time and difficulty (Fig. 2.6): harder scenes require more time.

◦ Interestingly, easier rated tasks generally require fewer spatial refer-
ences (Fig. 2.7): more spatial references in a sentence imply a greater
depth of search to find the correct answer.

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of Sentences

5

4

3

2

1

Su
b
je

ct
iv

e
D

i�
cu

lt
y

Number of
Spatial References

0
1
2
3
4
5
6
7
8
9
10

Figure 2.7: The effect of subjective diffi-
culty ratings on the number of spatial ref-
erences.

Difficulty Word Count Spatial Reference Order/Quantity Word Completion Time

Difficulty — 0.528 0.213 0.338 0.508
Word Count 0.528 — 0.416 0.425 0.682

Spatial Reference 0.213 0.416 — 0.082 0.262
Order/Quantity Word 0.338 0.425 0.082 — 0.350

Completion Time 0.508 0.682 0.262 0.350 —

Table 2.4: Spearman’s rho correlations
of sentence features and scene difficulty
evaluations. All correlations are statisti-
cally significant with p < 0.01.

2.4 Study 2: Evaluating Language for Clarity

To study the principles of clear spatial references in human robot col-
laboration, we need to validate the clarity of the instructions obtained in
Study 1 (Sec. 2.2). First, we manually coded the instructions in terms of
two criteria (perspectives had already been coded in Study 1 (Sec. 2.2)):
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◦ Block ambiguity - the number of blocks that people could possibly
identify from the image based on the given instructions.

◦ Perspective - whether there is an explicitly stated perspective provided
in the instructionss.

Subsequently, we ran a follow up study to empirically measure the
clarity of the sentences. In this second study, participants were pre-
sented with the stimuli from Study 1 (Sec. 2.2) (without red indication
arrows) alongside the corresponding block descriptions from Study 1
(Sec. 2.2), and were asked to click on the indicated blocks. We collected
responses from ten participants for each instruction from Study 1 (Sec.
2.2).

Coding instructions for Clarity

We manually code each of the instruction from Study 1 (Sec. 2.2) for
perspective and general block ambiguity. The coding measures, inter-
rater reliability scores, and preliminary findings are described next.

Perspective As described in Sec. 2.2 and Table. 2.2, all sentences are la-
beled with perspective information. Among all the 1400 sentences, 454
(32.4%) sentences use unknown perspective, 339 (24.2%) sentences use
partner perspective, 15 (1.07%) sentences use participant perspective,
and 589 (42.1%) sentences use neither perspective.

Block Ambiguity Block ambiguity is the number of blocks this instruc-
tion could possibly identify. For our definition, no inferences are al-
lowed when determining block ambiguity. Every detail which could
possibly lead to ambiguity should be considered and expanded to dif-
ferent referred blocks. For example, the spatial relation “surrounded”
could mean either partially or fully surrounded, which makes the sen-
tence “the block that is surrounded by three blocks” potentially am-
biguous. Unknown perspective could also lead to block ambiguity if
different blocks are identified under the assumption of different per-
spectives.

We manually code each of the instructions from Study 1 (Sec. 2.2) for
“high” or “low” block ambiguity. If a sentence could refer to only one
single block in the scene, it is rated as “low” ambiguity. Otherwise, it
is rated as “high” ambiguity. We use the same process as in Sec. 2.2 to
establish inter-rater reliability. On 10% of the data, the average Cohen’s
κ for the four raters is 0.68, indicating high rater agreement. Each rater
subsequently code one quarter of the remaining data.

Among all the 1400 sentences coded, 895 (63.9%) sentences are not
block ambiguous with only one block being referred to, while 492 (36.1%)
sentences possibly refer to more than one block.



Online Study Design and Procedure

As mentioned above, the goal of the second study is to investigate the
clarity of instructions, which will guide us through the future research
on robot-generated instructions. In this online study, new Amazon Me-
chanical Turk participants were shown 40 configurations randomly cho-
sen from the pool of 28 configurations generated in Study 1 (Sec. 2.2).
Each configuration was presented alongside one of the corresponding
instruction collected from Study 1 (Sec. 2.2). We would make sure that
the clarity of all the collected instructions in Study 1 (Sec. 2.2) were eval-
uated here. Then the participants were asked to click on the block that
best matched each instruction. In Fig. 2.8, as people moved their mouse
over the image, a red circle appeared over the blocks to show them
which block they would be selecting. When they clicked on the block,
a black and white checkered circle would appear around the selected
block. Continuing to move the mouse would present a red circle on
those blocks which the participants could then click on to change their
answer. Then we measured the participant’s accuracy at selecting the
indicated block.

Figure 2.8: A scene in the second study

We compute the following metrics for Study 2:

◦ Final Answer - whether a participant picks the correct block.
◦ Accuracy - average over 10 participants of final answer for each in-

struction.
◦ Completion Time - duration from moment when the page finishes load-

ing to the moment when a participant clicks the next buĴon to pro-
ceed.

Based on our ambiguity measures and the results from Study 2, we
hypothesize that:

H4 Block ambiguous sentences will take participants in Study 2more time
and participants will be less accurate in discerning the referred block.

H5 Sentences with unknown perspective will take participants in Study
2 more time and they will be less accurate in discerning the referred
block. Conversely, sentences with neither perspectivewill take less time
and participants will bemore accurate in discerning the referred block.

2.5 Study 2 Result

We collect the responses from 356 participants and randomly select 10
responses for each of the 1400 sentences from Study 1 (Sec. 2.2). We
evaluate the participant performance in Study 2 on the set of sentences
from Study 1 (Sec. 2.2) by measuring their accuracy and completion time
as described above. We also compare the objective accuracy measure to
our manually-coded block ambiguity and perspective taking.
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Hypothesis H4

First, we investigate block ambiguity by conducting an independent-
samples t-test measuring the effect of block ambiguity (low or high) on
accuracy (Fig. 2.9) and completion time (Fig. 2.10). There are significant
results for both accuracy (t(1398) = 13.888, p < 0.005) and comple-
tion time (t(1398) = −5.983, p < 0.005). Accuracy is lower and com-
pletion time is higher on sentences that contain ambiguous block refer-
ences (H4). These results confirm that block ambiguous statements take
longer amounts of time for participants to process and participants are
less accurate in discerning the referred block. 0.0 0.2 0.4 0.6 0.8 1.0

Average Accuracy (Max = 1.0)

Not
Ambiguous

Block
Ambiguous p < 0.005

Figure 2.9: The effect of block ambiguity
on average selection accuracy.
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Figure 2.10: The effect of block ambiguity
on average completion time.
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Figure 2.11: The effect of perspective on
average selection accuracy.
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Figure 2.12: The effect of perspective on
average completion time.
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Figure 2.13: The effect of the subjective
difficulty ratings from Study 1 (Sec. 2.2)
on average selection accuracy from Study
2 (Sec. 2.4).

Hypothesis H5

Next, we analyze perspective taking by conducting a one-way ANOVA
measuring the effect of perspective type (participant, partner, neither,
or unknown) on accuracy (Fig. 2.11) and completion time (Fig. 2.12).
Perspective type has a significant effect for both accuracy (F (3, 1396) =

43.655, p < 0.005) and completion time (F (3, 1396) = 34.607, p < 0.005).
Sentences that use neither perspective have higher accuracies (M =

0.802, SD = 0.240) than sentences that use partner (M = 0.662, SD =

.278, p = 0.019) or unknown (M = 0.619, SD = 0.307, p = 0.017) per-
spective (H5). Similarly, average completion time is lower for sentences
that use neither perspective (M = 11.418s, SD = 10.56) than partner
(M = 16.881, SD = 9.81, p < 0.001) or unknown (M = 17.756, SD =

12.03, p < 0.001) perspective (H5). No other significant differences are
found. These results confirm that neither perspective statements take
shorter amounts of time for participants to process and participants are
more accurate in discerning the referred block. At the same time, un-
known perspective statements take participants longer time and partic-
ipants are less accurate.

Additionally, we observe that participants in Study 2 have lower ac-
curacy on sentences that participants in Study 1 (Sec. 2.2) label as more
difficult (Fig. 2.13). This result is not surprising as participants who
have trouble writing a clear sentence would likely rate the task as diffi-
cult.

We conclude that hypotheses 4 and 5 are both supported. Block am-
biguity and unknown perspective are both correlated with higher com-
pletion times and lower accuracies. The type of perspective in the sen-
tence has a significant effect on accuracy: when the instructions are
wriĴen in neither perspective, participants in Study 2 have higher ac-
curacy than any of the other perspectives.



2.6 Conclusion

We created a corpus of REs when identifying objects in a potentially
ambiguous seĴing. We identified a cognitive process which plays a sig-
nificant role in the formation of these REs. We defined metrics to aid
in scoring the optimality of a RE. We designed an evaluation process
based on these metrics. And finally, we performed an initial, yet broad,
analysis on our corpus that was able to uncover a handful of insights.

Our findings suggest that sentence clarity suffers when there is ei-
ther an ambiguity related to the number of blocks a sentence can spec-
ify or an ambiguity related to perspective. To support our next step in
generating language-based explanations, we will follow the insights we
collect in this section.

◦ The visual features and spatial relations people used are based on the
frequency of words in our corpus [Li et al., 2016] and visual search
literatures [Wolfe, 1994].

◦ The more spatial relations used in REs, the harder time people will
have in understanding these REs.

◦ A clear RE should eliminate the perspective ambiguity by specifying
perspective and eliminate the block ambiguity by making sure that
it only identifies the target block.

2.7 Future Work

We will discuss a few of these insights in the following section. In an-
alyzing the corpus, we discovered that participants generally followed
one of three approaches when writing instructions:

◦ a natural approach where they used embedded clauses linked to-
gether by words indicating spatial relationships such as in the in-
struction “Pick up the yellow block directly to the left of the right-
most blue block.”,

◦ an algorithmic approach, which a majority of the users employed,
where they partitioned their instructions in stages reflecting a visual
search process such as in the instruction “there is an orange block on
the right side of the table. Next to this orange block is a yellow block.
Please pick up the yellow block touching the yellow block.”

◦ an active language approach where they provided instructions asking
the partner to move their arms (usually) in a certain way so as to
grasp the desired object such as in the instruction “stand up, reach
out over the table, and grab the yellow block that is touching the blue
block closest to me.” In certain instructions, the participant would
even offer active guidance (which is of course not an option in a one
shot response wriĴen in a web form).
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Among the three, the algorithmic approach is often the clearest but
feels less natural. We believe that these observations about instruction
approach types will lend themselves well to further investigation on
user instruction preferences. For example, some users might prefer
to give algorithmic descriptions which iteratively reduce ambiguity as
needed, while other users might prefer to utilize active language where
they guide the robots motions via iterative movement-driven instruc-
tion.

Further, the descriptions requiring perspective takings usually have
perspective-dependent terms like ’right’, ’left’, ’above’ and ’below’. If
establishing perspective proves to be difficult in a scenario, robots should
prefer to use perspective-independent spatial relations. That is, if the
robot is able to generate a description using our definition of ’neither’
perspective, it should prefer to do so over other descriptive strategies.

However, there are also exceptions of preferring ‘neither perspective.
For example, in the scene as shown in Fig. 2.14, if we force ourselves
to use ‘neither’ perspective, we might come up with this instruction,
“pick up the blue block that is closer to you and right next to the yellow
block.” This instruction is clear, but involves many features. This might
give hearers a hard time to understand our instruction based on our
finding that subjective difficulty ratings are strongly correlated with the
number of spatial references required to indicate the target block. On
the other hand, if we do not have to use ‘neither’ perspective, we can
have a much more efficient instruction, “pick up the blue block on your
far right.” Therefore, a trade-off has to be made between preferring
‘neither’ perspective and producing efficient instruction.

Figure 2.14: In this scene, a tradeoff has
to be made between preferring ‘neither’
perspective and producing efficient in-
struction.



3
Generating Explanations in Natural Language

In Sec. 2, we find that the clarity of referring expressions suffers when
there is either a block ambiguity related to the number of blocks a sentence
can identify or a perspective ambiguity related to specified perspectives.

Since REG does not necessarily require a human standing on the op-
posite side from his partner, we don’t need to worry about the issue of
perspective ambiguity. We can assume that speakers and hearers share
the same perspectives. We mainly focus on the more general problem,
which is how to generate clear referring expressions.

To resolve the issue of block ambiguity, we need to select the set of
features in two steps. The first step is to choose the set of features to
distinguish the target object from its distractors. The second step is to
further optimize the set of features for the ease of human understanding
based on the frequency of each feature appeared in our corpus [Li et al.,
2016].

REG is a process where the speaker first identify the target object,
gather perceptual information, and select a set of features for the object,
which could be considered as the converse problem to visual search,
in which an observer is given a set of features of an object and then
identify it within a visual scene [Clarke et al., 2013]. The features peo-
ple use in visual search are similar to the features they select in content
selection [Clarke et al., 2013]. We can also resort to visual search litera-
tures [Wolfe, 1994] for human preferences on features.

3.1 Related Work

Visual Feature

Researchers in the field of REG have considered different sets of visual
features in their REG algorithms, such as color, shape [Matuszek et al.,
2014], type [FiĵGerald et al., 2013] and quantity [Dale, 1989].
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Spatial Relation

Qualitative spatial reasoning models a spatial relation over the spatial
entities, such as points, lines, planes, and regions, as a constraint in
the scene. Checking the consistency between a given expression and
the set of constraints imposed by the scene could be reduced to a Con-
straint Satisfaction Problem (CSP) problem [Chen et al., 2015]. People
model spatial relations between two spatial regions as constraints based
on the distance of two regions [Cohn and Hazarika, 2001, Cohn and
Renz, 2008], and a composition of interior, boundary, and exterior of
two regions [Egenhofer and Vasardani, 2007]. To reason about direc-
tions between point-based objects, Cone-Shaped Direction [Clementini
and Di Felice, 1997], Projection-Based Direction [Isli et al., 2001], and
Oriented Point Algebra [Moraĵ, 2006] split the 360◦ unit circle into mul-
tiple ranges. To reason about distances between point-based objects,
Rotation, Scaling and Translation [MacMillan et al., 2004] and Quali-
tative Trigonometry and Qualitative Arithmetic [Liu, 1998] split the 2D
scene into multiple areas.

Referring Expression Understanding

Many language understanding works follow an instruction-based learn-
ing framework, in which robots extract compositional structures or build-
ing generative and discriminative models for understanding route in-
structions [MacMahon et al., 2006].

One approach is to develop parsers to translates route instructions
into formal logics via heuristics [Dzifcak et al., 2009] and into aĴribute-
value pairs and robot actions via context-free grammar [MacMahon et al.,
2006]. Forbes et al. [2015] develop a model to understand manipulation
commands based on reachable space and object referring history.

More other works include a world model in interpreting language.
Hsiao et al. [2008] develop the notion of object schema as a discrete
structure of object aĴributes and address language grounding via schema
searching and matching. Tellex et al. [2011] develop Generalized Ground-
ing Graphs (G3) as a world model which dynamically instantiates a
factor graph to understand a route instruction based on its hierarchi-
cal and compositional semantic structure. Howard et al. [2014] develop
Distributed Correspondence Graph (DCG) as a model for planning con-
straints from natural language instructions [Howard et al., 2014]. Paul
et al. [2016] further extend DCG model to support abstract concepts in
the world.

Other objects or humans in the environment could affect or facilitate
language understanding. Matuszek et al. [2010], Vogel and Jurafsky
[2010] parse instructions to path descriptions based on a labeled topol-



ogy. Kollar et al. [2010] present language understanding as inferring
the most probable path given detected objects from route instructions.
Liu and Chai [2015] enable robot to assess its perceptual differences
with humans and mediate perceptual differences by interacting with
humans via dialog. Yi et al. [2014, 2016a,b] extend DCG to model hu-
man constraints in robot plans.

Referring Expression Generation

Referring Expression Generation (REG) 1 usually has 2 steps: 1 Referring Expression Generation (REG):
a discrimination task, where the system
needs to communicate sufficient infor-
mation (words or phrases) to identify one
domain entity and distinguish it from
other domain entities [Reiter et al., 2000,
Reiter and Dale, 1997].

◦ content selection or content determinationwhere the speaker determines
the set of visual features and spatial relations to distinguish the target
object from distractors [Krahmer et al., 2003].

◦ surface realization where the speaker realizes the selected visual fea-
tures and spatial relations into natural language [Krahmer et al., 2003].

This thesis mainly focuses on content determination with the assump-
tion that we have a good surface realizer. The REG algorithms in early
stage follow Gricean maxim [Grice, 1975] to search for a referring ex-
pression with neither too much information which could be overwhelm-
ing, misleading, and boring, nor too liĴle information which could be
ambiguous [GaĴ and Krahmer, 2017]. Full Brevity Algorithm (FB) con-
duct an exhaustive breadth-first search over all the sets of features until
a smallest set can distinguish the target object [Dale, 1992]. But FB is
NP hard and psychologically unrealistic. Greedy Heuristic algorithm
conduct a depth-first search to find an available set of features by greed-
ily adding the features with the most descriptive power 2 [Dale, 1989, 2 Descriptive power: how many distrac-

tors a feature can rule out [Dale, 1989,
1992].

1992]. But the solution may not be optimal. Incremental algorithm (IA)
is more psychologically realistic because it selects features based on a
domain-specific preference or cognitive salience of all the features [Dale
and Reiter, 1995]. For example, the algorithm would select color in prior
to shape because people usually prefer color over shape. But IA might
not return the shortest solution.

Graph-based Algorithm (GBA) REG algorithm was proposed to resolve
the trade-off between psychological realism and language efficiency.
GBA develops a labeled directed multigraph, called REG graph, to repre-
sent the scene with objects, visual features, spatial relations, and the
preference ordering over all the features Krahmer et al. [2003]. Each
object in the scene is represented as a node in the graph. Each unary
feature, e.g. visual feature “red”, is represented as a self-loop. Each bi-
nary features, e.g. spatial relation “next to”, is represented as a binary
edge [Krahmer et al., 2003]. We then make this graph psychologically
realistic by assigning a cost to each edge based on the human preference
on the associated feature. For example, Fig. 3.2(c) is the REG graph G
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representing the objects, visual features, spatial relations, and assigned
costs in the scene as shown in Fig. 3.2(a). GBA would search through
all the possible subgraphs g ∈ G and find the unique subgraph gu ∈ G

as shown in Fig. 3.2(d), such that gu is graph isomorphic 3 to one and only 3 Graph isomorphism is introduced in
Sec. 3.1.Graph Isomorphism.one subgraph g′u ∈ G. A clear referring expression Fig. 3.2(b) to identify

the target object c could be extracted from gu [Krahmer et al., 2003].

c

a
b

(a)

The block in front of  
another block.

(b)

ba

green,1 blue,1

green,1

c

left,2
right,2

front,2
behind,2 left,2

right,2

(c)

ac

behind

(d)

Figure 3.1: (a) a scene with a target ob-
ject c indicated by the purple circle; (b) a
clear referring expression r for the target
object c in (a); (c) the REG graph G for the
scene (a); (d) a unique subgraph g ∈ G
for identifying c. g is only isomorphic to
the subgraph g′ ∈ G in purple.

Pechmann [1989] shows that speakers tend to overspecify by includ-
ing redundant features which have no contrastive value to refer to ob-
jects. For example, to identify the target block indicated in the purple
circle in scene Fig. 3.2(a), people might prefer to say “the green block
under a green block” over “the green block under a block” although the
italicized feature “green” is redundant. Following overspecification, Vi-
ethen et al. [2013] extend GBA by modeling user’s individual variation
in overspecification. There are many other works on extending GBA
to have more expressiveness in the generated referring expressions by
introducing plurals [Krahmer and Van Deemter, 2012], basic-level cat-
egory descriptor [Krahmer and Van Deemter, 2012] or entry-level cat-
egory aĴribute [Kazemzadeh et al., 2014], conceptual gestalt [Deemter
et al., 2012], underspecification [Van Deemter et al., 2012], egocentric-
ity [GaĴ et al., 2014, Van Deemter et al., 2012], serial dependency [GaĴ
et al., 2014], hierarchically structured domains [Paraboni et al., 2007],
feature salience [Mitchell et al., 2013, GaĴ et al., 2014], individual vari-
ation [Ferreira and Paraboni, 2014, Dale and Viethen, 2009], and non-
determinism [Van Deemter et al., 2012]. The state of art GBA is Longest
First algorithm [Viethen et al., 2013] 4, a branch and bound algorithm, 4 Full code is available http://www.

m-mitchell.com/code/.which exhaustively search for all the referring expressions with the low-
est cost and return the longest one among them for overspecification.

Besides GBA, there are other approaches for REG. FiĵGerald et al.
[2013] train a log-linear model from a corpus for the probability distri-
bution of a referring expression formulated as a logical expression that
identifies target objects. Fang et al. [2014], Fang [2014] model REG as
a collaborative decision making process to bridge the discrepancy be-
tween the robot and human world models.

http://www.m-mitchell.com/code/
http://www.m-mitchell.com/code/


Another line of work develops algorithms to jointly perform both
content selection and surface realization. Engonopoulos and Koller [2014]
define a synchronous grammar that relates surface strings with the tar-
get object and compute a chart to represent all the valid referring expres-
sions. Tellex et al. [2014] enable robots to generate questions by using
G3 to model the human ability to understanding a question [Tellex et al.,
2011].

More recent work has been focusing on developing the interface be-
tween computer vision and referring expressions to produce descrip-
tions for objects in complex and realistic visual scenes [Mitchell et al.,
2013, Kazemzadeh et al., 2014, Mao et al., 2016].

In this work, we choose to use GBA because REG graph gives us a
qualitative model of the world. Based on this world model, we could
bridge the gap between the robot’s and human’s world models and
achieve a shared mental model [Converse, 1993] through human-robot
interaction or physical robot manipulation guided by optimizing the
REG graph [Liu and Chai, 2015]. Meanwhile, the REG graphs with
assigned costs paves the way for a natural fusion between traditional
rule-based approaches and more recent statistical approaches in a sin-
gle algorithm [Krahmer et al., 2003].

The state of art GBA - Longest First algorithm [Viethen et al., 2013]
and a well-developed indeterministic REG algorithm - Visible Objects
Algorithm 5 [Mitchell et al., 2013] are evaluated on two well-known 5 Full code is available https:

//github.com/mmitchellai/
VisibleObjectsAlgorithm.

REG corpora, the GRE3D3 corpus [Viethen and Dale, 2008] as shown
in Fig. 3.2 and the singular furniture section of the TUNA corpus [van
Deemter et al., 2006]. However, both corpora only contains simple scenes
like Fig. 3.2, instead of complex scenes as shown in Fig. 3.3. The current
GBA algorithm does not extend well to a kitchen scene and does not
support for the n-ary features that involve more than two objects we
found in our corpus in Sec. 2, such as “a line of three blocks”. In this
chapter, we will propose several techniques to speed up the algorithm
so that it scales to a larger scene in our corpus and a more comprehen-
sive hierarchical graph structure to support n-ary features.

Figure 3.2: A simple scene from GRE3D3
corpus [Viethen and Dale, 2008].

Figure 3.3: A complex scene from our
corpus [Li et al., 2016].

Graph isomorphism

A labeled graph is defined as G(V,E, LV , LE ,ϕ), where V is a set of
vertices; E ⊆ V ×V is a set of edges; LV and LE are sets of vertex labels
and edge labels respectively; and ϕ is a label function that defines the
mappings V → LV and E → LE .

A labeled graphG1(V1, E1, LV1, LE1,ϕ1) is isomorphic to another graph
G2(V2, E2, LV2, LE2,ϕ2), if and only if there exists a bijection f : V1 →
V2 such that:

◦ ∀u ∈ V1,ϕ1(u) = ϕ2(f(u))

https://github.com/mmitchellai/VisibleObjectsAlgorithm
https://github.com/mmitchellai/VisibleObjectsAlgorithm
https://github.com/mmitchellai/VisibleObjectsAlgorithm
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◦ ∀(u, v) ∈ E1 ⇔ (f(u), f(v)) ∈ E2

◦ ∀(u, v) ∈ E1,ϕ1(u, v) = ϕ2(f(u), f(v))

The bijection f is an isomorphism between G1 and G2 [Jiang et al.,
2013].

Time Complexity Graph isomorphism which is neither known to be
solvable in polynomial time nor NP-complete [Conte et al., 2004] The
guaranteed upper bound (worst-case analysis) 6 for checking graph iso- 6 http://dabacon.org/pontiff/?p=

4148morphism for arbitrary graphs with n vertices is subexponential
exp(

√
O(nlogn)) [Babai and Luks, 1983]. Recently a new paper shows

that it could be solved in quasipolynomial time exp((logn)O(1)) through
group theoretic “local certificates” and combinatorial canonical parti-
tioning techniques [Babai, 2015].

Topological BasedAlgorithms Some algorithms reduce the computational
complexity by imposing topological restrictions. We can enforce these
topological restriction onto our REG to leverage the faster algorithms.
Tree isomorphism can be solved in linear time by associating each node
with a tuple that describes the complete history of its descendants [Aho
and Hopcroft, 1974, Campbell and Radford, 1991]. However, it is hard
to transform REG graph to a tree because of the undirected cycles, such
as, “object 1 is on the left to 2, which is on the left to 3, which is be-
hind 1.” Isomorphism for planar graphs [Hopcroft and Wong, 1974]
and graphs with bounded genus [Miller, 1980] can be solved in almost
linear time. We can planarizing the REG graph into a closely related
planar graph via weighted greedy pruning algorithm. The downside is
that we might lose some edges with low cost, which damages our solu-
tion optimality [Krahmer et al., 2003]. Bounded valence (degree) graph
isomorphism could be solved in polynomial time by being reduced to
color automorphism problem for groups [Luks, 1982]. Our REG graph
has a very large bound on valence which is equivalent to the number of
visual features plus the number of possible spatial relations with all the
other objects. It would be hard to improve the efficiency a lot even we
transfer our REG graph to a bounded valence graph.

Tree Search BasedAlgorithms Most of the algorithms of exact graph match-
ing are based on tree search with backtracking. The basic idea here is
that a partial match is iteratively expanded by adding a new pair of
matched nodes based on compatible constraints, preference orderings
of node and edge aĴributes, and heuristics to prune unfruitful search
paths. If the current partial mapping cannot be expanded furthermore,
then the algorithm backtracks [Conte et al., 2004]. Some algorithms
search for matches in the adjacency matrix [Ullmann, 1976], distance
matrix [Schmidt and Druffel, 1976], or Constraint Satisfaction Problem

http://dabacon.org/pontiff/?p=4148
http://dabacon.org/pontiff/?p=4148


(CSP) [Larrosa and Valiente, 2002] representation of a graph and prun-
ing the search with backtracks and refinements. The VF [Cordella et al.,
1998a] and VF2 [Cordella et al., 2001] algorithms search for matches in
a depth-first search manner and apply a heuristic that is based on the
analysis of the sets of nodes adjacent to the ones already considered in
the partial mapping to prune the search tree.

Group Theory Based Algorithms nauty and Traces 7 checks for iso- 7 http://pallini.di.uniroma1.it/
index.htmlmorphism between graphs by verifying the equality of the adjacency

matrices of their canonical forms [McKay et al., 1981, McKay and Piperno,
2014]. The equality verification can be done in O(N2) but the construc-
tion of canonical labeling can require exponential time in the worst case.
It is really effective for matching a single small graph against a large
fixed database of graphs by pre-computing canonical labels, but it doesn’t
exploit node and edge aĴributes of the graphs, compared to VF2 [Conte
et al., 2004]. Other algorithms are available, such as Saucy3 8, bliss 9, 8 http://vlsicad.eecs.umich.edu/

BK/SAUCY/
9 http://www.tcs.hut.fi/Software/
bliss/index.html

conauto 10.

10 https://sites.google.com/site/
giconauto/3.2 Referring Expression Generation Algorithm

Referring Expression Generation Graph

The GBA algorithm would construct a REG graph to represent the scene [Krah-
mer et al., 2003], which create a mapping between the scene Fig. 3.2(a)
and the REG graph Fig. 3.2(c).

To use REG graph to reason about referring expressions (RE), we
need to map a RE to the REG graph. Considering a RE as a set of fea-
tures, we can use a set of edges to represent these features, which means
that we can use a subgraph to represent a RE. Now we have two map-
pings. We map a scene in Fig. 3.2(a) to a REG graph in Fig. 3.2(c). We
also map a RE in Fig. 3.2(b) to a subgraph in Fig. 3.2(d).

A clear RE only identifies one object in the scene - the target object.
Similarly, a unique subgraph is only isomorphic to one subgraph in the
REG graph. We can further map the clarity of a RE to the uniqueness of
a subgraph. For example, in the scene Fig. 3.2(a), we have a target object
c indicated by the red circle. The RE in Fig. 3.2(b) is ambiguous because
it can identify both block a and c. Correspondingly, the subgraph in
Fig. 3.2(d) is isomorphic to two subgraphs in the REG graph Fig. 3.2(c)
(one in orange and one in blue). An example of a clear RE is that in
the scene Fig. 3.2(e), we have a target object c indicated by the purple
circle. The RE in Fig. 3.2(f) is clear because it can only identify block c.
Correspondingly, the subgraph in Fig. 3.2(h) is isomorphic to only one
subgraph in the REG graph Fig. 3.2(g) in purple. Therefore, generating
a clear RE is equivalent to searching for a unique subgraph inside the

http://pallini.di.uniroma1.it/index.html
http://pallini.di.uniroma1.it/index.html
http://vlsicad.eecs.umich.edu/BK/SAUCY/
http://vlsicad.eecs.umich.edu/BK/SAUCY/
http://www.tcs.hut.fi/Software/bliss/index.html
http://www.tcs.hut.fi/Software/bliss/index.html
https://sites.google.com/site/giconauto/
https://sites.google.com/site/giconauto/
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REG graph.
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Figure 3.4: (a) a scene with a target object
c indicated by the red circle; (b) an am-
biguous referring expression r for the tar-
get object c in (a); (c) the REG graph G for
the scene (a); (d) a non-unique subgraph
g ∈ G for identifying c. g is isomorphic
to the subgraphs g1 ∈ G in orange and
g2 ∈ G in blue; (e) the same scene as
(a), with the target object c indicated by
the purple circle; (f) a clear referring ex-
pression r′ for c in (e); (g) the same REG
graph G as (c) for the scene (e); (h) a sub-
graph g′ ∈ G for identifying c in (e). g′ is
only isomorphic to the subgraph g3 ∈ G
in purple.

Graph-based Referring Expression Generation

The original REG algorithm would search for the unique subgraph g(Vg, Eg) ∈
G(V,E) with the minimum cost, as described in Equ. 3.1. Then this sub-
graph could distinguish the target object o ∈ O from other objects.

g = arg min
g∈G

∑

e∈Eg

Cost(e)

subject to (3.1)

o ∈ Vg and !g′ ̸= g ∈ G s.t. g′ ≃ g

This main loop of the algorithm has two steps, search process and
isomorphism process. In the search process, the algorithm would start
from a minimal subgraph which has only one node associated the tar-
get object. Then the program will iteratively generating subgraphs by
adding new edges based on their costs in a breadth-first manner. In this
way, all the possible subgraphs with the node associated with the tar-
get object will be generated. In the isomorphism process, the algorithm
would check the uniqueness of each newly generated subgraph g in the
REG graph G through checking graph isomorphism between g and any
subgraphs g′ of G. To verify graph isomorphism between g and g′, the
algorithm would iteratively map all the nodes and the edges derived



from the nodes in g to g′ in a depth-first manner with backtracking.
Note that the matching here means both graph structure and seman-
tic, i.e., the labels associated with the nodes and edges. For example, if
we can find two subgraphs g1 ∈ G and g2 ∈ G which are isomorphic to
g ∈ G, i.e. g ≃ g1 and g ≃ g2, then the RE realized from g should be able
to identify two different objects in the scene, instead of the target object
only, which means that the RE is ambiguous. The algorithm will re-
peat these two steps until a g with a minimal cost among all the unique
subgraphs is found. The full algorithm is described in [Krahmer et al.,
2003] and the implementation of the state-of-art graph-based Longest
First REG algorithm [Viethen et al., 2013] has implementation available
11. 11 http://www.m-mitchell.com/code/

index.html

Inefficiency in GBA

As the number of objects increases, the number of possible subgraphs
will increase. Then there are more possible graphs in the search process
and the graphs to be matched are more complex in the isomorphism
process.

We test the implementation in finding a RE for the block 10 in a scene
with 15 blocks which was previously used in our user studies, as shown
in Fig. 3.5. The algorithm generates a scene graph for REG, as shown in
Fig. 3.6(a). The solution with a minimal cost is [('9', 'left', '5'),
('10', 'behind', '9'), ('5', 'color', 'red')]which represents
a RE “block 10 is behind another block which is on the left to a red
block.” The search process takes 13.983 seconds and the isomorphism
process takes 5.613 seconds. Therefore, we aim for speeding up both
search and isomorphism processes.
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Figure 3.5: A simple scenario.

Speeding up GBA

Speeding Up the Search Process The original algorithm in Krahmer et al.
[2003], Viethen et al. [2013] has to generate all the possible subgraphs
and find the one that has the minimal cost and could uniquely identify
the target object, which is very time-consuming. In scenario Fig. 3.5, to
find a RE for block 10, the search process takes 13.983 seconds.

To speed the algorithm up, we could prune the redundancy in the
search tree without sacrificing the optimality in our solution based on
the following characteristics of a REG graph.

◦ If the parent subgraph is unique, then whatever edges you add to it,
the child subgraph will be always unique.

◦ Since a subgraph with less edges could have a higher cost than a sub-
graph with more edges, and vice versa. We cannot prune a branch
in the search tree just because the corresponding subgraph has many

http://www.m-mitchell.com/code/index.html
http://www.m-mitchell.com/code/index.html
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(a) The original REG graph for the scene in Fig. 3.5.

11   red    rightTable    centerTable  

7

  close  

9

  left    front  

  red    rightTable    centerTable  

8

  left  

  red    centerTable  

10

  front  

5

  left  

  yellow    centerTable  

  left  2

  left  

  close  

  yellow    bottomTable    centerTable  

  close  

  red    centerTable  

  close  

  yellow    leftTable    centerTable  

1

  front  

13   blue    isolated    rightTable    topTable  

14

  front  

  left  

  yellow    rightTable    centerTable  12

  front  

  blue    centerTable  

15   green    isolated    rightTable  

  green    leftTable    bottomTable    centerTable  

3

  front  

  blue    isolated    leftTable    centerTable  

4   green    topTable    centerTable  

6

  close  

  front    left  

  red    topTable    centerTable  

(b) The reduced REG graph for the scene in Fig. 3.5 based on the commutative rule.

Figure 3.6: The REG graph in (a) could be
reduced to the one in (b) via the commu-
tative rule.



edges. But instead, we can prune a branch in the search tree because
the corresponding subgraph has a high cost.

Accordingly, we can reduce the number of generated subgraphs by
pruning the search space in two ways.

◦ If a search branch reaches a unique subgraph, this subgraph becomes
a new possible solution and we prune its child subgraphs.

◦ If a search branch reaches a subgraph that has a higher cost than the
cost of the current best solution, then we eliminate this subgraph and
prune its child subgraphs.

In the same scenario in Fig. 3.5, the more efficient algorithm finds the
same referring expression for block 10 in 6.156 seconds. We also test
this on all of our scenes used in the user studies as shown in Fig. 2.2. In
average, this pruning search technique would reduce the total running
time of REG about 50.77% as shown in in Fig. 3.2.
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Figure 3.7: The effect of search pruning
on the total running time to generate RE’s
for all the scenes as shown in Fig. 2.2.

Speeding up the Isomorphism Process The algorithm has to match each
generated subgraph g with the REG graph G to check the uniqueness
of g in G. To match g within G, the algorithm has to iterate through all
the possible subgraphs g′ ∈ G and match g with each of them, which is
very time-consuming. In scenario Fig. 3.5, to find a RE for block 10, the
isomorphism process takes 5.613 seconds.

To expedite the isomorphism process, we apply heuristics originally
designed for Constraint Satisfaction Problems (CSP), inspired by Lar-
rosa and Valiente [2002] who model graph isomorphism as a CSP. Our
goal is to find a match for a subgraph g(Vg, Eg) within the REG graph
G(V,E). The main loop of the depth-first graph matching algorithm
would start from matching vg ∈ Vg with v ∈ V , then expand vg and v

in parallel, and match the newly derived edges and nodes respectively.
The termination condition is all the nodes in Vg are matched to V and all
the edges derived from Vg are also matched to the edges derived from
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the corresponding nodes in V . If so, g is graph isomorphic to g′, denoted
as g ≃ g′.

We can speed up the algorithm by matching all the vg ∈ Vg in an or-
der determined by Minimum Remaining Values (MRV) heuristic. Based
on this heuristic, the program would choose to match the most con-
strained node with the fewest legal possible matches as the next node
g to try. For example, we want to find a match for the subgraph g as
shown in Fig. 3.8(a) in the REG graph G as shown in Fig. 3.8(b). Assum-
ing we have already matched node 1 and a, based on the MRV heuristic,
the next node to be matched in g would be node 2 instead of 4 because
2 has a higher degree than 4, i.e. it would be harder to find a match for
2 than 4. The benefit of MRV is to make the program fail fast so that we
could stop wasting our time on searching for a impossible match for g
in G.
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(a) A subgraph g refers to
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(b) A REG graph G.

Figure 3.8: Our task is to match g within
G.

Assuming now we are trying to find a node v ∈ V that could match
vg ∈ Vg . Let D(vg) = {v1, ..., vk} ⊆ V be the domain of possible
matches, or candidates. The original algorithm would iteratively try
all the node v ∈ D(vg) until finding a match vg ↔ v, s.t. all the edges
derived from vg are matched to the edges derived from v respectively.

One way to improve the efficiency is to match vg with all the v ∈
D(vg) in an order determined by Least Constraining Value (LCV) heuris-
tic. Based on LCV, the algorithm would choose the node v ∈ D(vg) that
leaves the most flexibility for the future unmatched neighboring nodes
v′g ̸= vg ∈ Vg . For example, assuming we have matched 1 in g Fig. 3.8(a)
with a in G Fig. 3.8(b), our task in this iteration is to find a match for
node 2 derived from 1. Our candidates for 2 are the nodes derived from
a, such as b, d, and e, i.e. the matching could be 2 ↔ b, 2 ↔ d, or 2 ↔ e

if g ≃ G. First of all, e is not possible because e has less in-degree than



2. Therefore, we have to try matching 2 to b and d iteratively. Based
on LCV heuristic, since d has a higher or equal in- and out-degree than
b, we will try b before trying d to leave d a higher matching chance for
the unmatched nodes 3 and 4 in g Fig. 3.8(a). The benefit of LCV is to
reduce failures by leaving more flexibility for the future. Note that here
we do prefer algorithms which fail slow over the ones which fail fast.
The reason is that even the program fails to match 2 and b, it has to try
2 and d anyway. Fast failing will not prune the search.

In addition, we also prune the match graph by applying constraints
on the to-be-matched nodes. VF2 graph matching algorithm treat graph
matching problem as a CSP and apply heuristics to speed it up [Cordella
et al., 1998a, 2000, 1999, 1998b, 2001]. Here we apply 1 and 2 look-ahead
heuristics [Cordella et al., 1998b] on the to-be-matched nodes.

For example, our goal is to match the REG graph g in Fig. 3.9(a) with
the full graph G in Fig. 3.9(b). Assuming in this iteration, we are trying
to match the node m ∈ g with node n ∈ G. Since we only focus on m

and n, we view g and G as chains centered at m and n. The set of nodes
inA(m) (A(n)) containsm (n), and the successors and predecessors ofm
(n) which have already been matched. The set of nodes in B(m) (B(n))
contains the predecessors and successors of m (n) that are 1 step further
from m (n) and have not been matched yet. The set of nodes in C(m)

(C(n)) contains the predecessors and successors of m (n) that are 2 steps
further from m (n) and have not been matched yet.

Before iteratively matching each nodes and edges derived from m

and n, we can check if it is possible to match m and n in advance using
the two following rules, 1 look-ahead and 2 look-ahead. From these two
looking-ahead, if we find that it is impossible to match m and n, then
we don’t need to check the derived nodes and edges.

◦ Check if the degrees of all the predecessors and successors of m that
are 1 step further from m but not already mapped, i.e. B(m), are
less than or equal to the ones of B(n) respectively. In Fig. 3.9, we
are comparing the degrees of nodes inside the B(m) box with the
degrees of nodes inside B(n) box.

◦ Check if the degrees of all the predecessors and successors of m that
are 2 steps further from m but not already mapped, i.e. C(m), are
less than or equal to the ones of C(n) respectively. In Fig. 3.9, we are
comparing the degrees of nodes inside theC(m) box with the degrees
of nodes inside C(n) box.

In the same scenario in Fig. 3.5, the algorithm with these heuristics
would find the same RE for block 10 in 6.217 seconds. We also test this
on all of our scenes used in the user studies as shown in Fig. 2.2. In
average, this pruning search technique would reduce the total running
time of REG about 16.65% as shown in in Fig. 3.2.
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(a) A subgraph g.
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(b) A full graph G.

Figure 3.9: In this iteration, we are trying
to match m ∈ g with n ∈ G.

0 50 100 150 200
Data

0

10

20

30

40

50

60

70

T
ot

al
ti

m
e

(s
ec

) Original
PruneMatch

Figure 3.10: The effect of match pruning
on the total running time to generate RE’s
for all the scenes as shown in Fig. 2.2.Speeding up Graph Building Many binary relations are commutative. For

example, if “object A is on the left to B”, then “B is on the right to A.”
In REG, for each pair of binary edges labeled as commutative relations,
we only need one of them in the REG graph and we can always deduct
the other edge by applying the commutative rule on the existing edge.
Therefore, we can significantly reduce the REG graph size by applying
commutative rule. For example, we want to generate a new subgraph
g′ from the current subgraph g = (10 → behind → 9) by expanding
the node 9 as shown in Fig. 3.6(a). Without commutative rule, g′ might
be (10 → behind → 9), (9 → front → 10). However, both g and g′

correspond to the same referring expression for object 10, “the object
behind another object.”

One way to eliminate this redundancy in searching for new subgraphs
is to apply commutative rule so that only one of the edge “front” and
the edge “behind” remains in the full graph as shown in Fig. 3.6(b).

In the same scenario in Fig. 3.5, the algorithm after applying the com-



mutative rule finds the same referring expression for block 10 in 12.356

seconds. We also test this on all of our scenes used in the user studies
as shown in Fig. 2.2. In average, this graph shrinking would reduce the
total running time of REG about 21.50% as shown in Fig. 3.2.
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Figure 3.11: The effect of applying com-
mutative rule on the total running time to
generate RE’s for all the scenes as shown
in Fig. 2.2.

We composite the three techniques from above and test the algorithm
on all of our scenes used in the user studies as shown in Fig. 2.2. In
average, this pruning search technique would reduce the total running
time of REG about 55.80% as shown in Fig. 3.12.

3.3 Hierarchical REG Structure

Based on our corpus, people tend to use qualitative expressions to de-
scribe a spatial information, including topology, orientation and dis-
tance. For example, people usually describe orientation by using qual-
itative expressions, e.g. “to the left of” and “northeast of” instead of
quantitative expressions, e.g. “53 degrees”. Similarly, people describe
distance via qualitative categories, e.g. “A is close to B”, or qualitative
distance comparatives, e.g. “A is closer to B than to C”, instead of quan-
titative values, e.g. “A is 1 meter away from B” [Renz and Nebel, 2007].

Constraints are widely used in modeling semantic spatial informa-
tion by determining the positions of objects in the physical world [Renz
and Nebel, 2007]. Constraints are determined by features, which based
on our corpus contain unary 12 , binary 13 , and n-ary 14 features. We 12 Unary feature: an object property or

visual feature, represented as a tuple
<aĴribute,value>. For example, in a
unary feature “a red block”, the aĴribute
is “color” and the value is “red”.
13 Binary feature: a spatial relation be-
tween two objects, represented as a tu-
ple <aĴribute,value>. For example, in a
binary feature “the block is far from an-
other block”, the aĴribute is “distance”
and the value is “far”.
14 N-ary feature: a spatial relation be-
tween more than two objects, repre-
sented as a tuple <aĴribute,value>. For
example, in an n-ary feature “the three
blocks in a line”, the aĴribute is “shape”
and the value is “line”.

develop a set of constraints accordingly based on these features.

UnaryAbsoluteQualitative Constraint A unary absolute qualitative con-
straint represents the unary qualitative features on a single object. Color
constraint defines the color of an object, e.g.“green”, “yellow”, “blue”,
“orange”. Isolation constraint defines whether an object is surrounded
by other objects or “isolated”. Absolute position constraint defines the ab-
solute position of an object viewing from the frame of the tabletop, e.g.
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(a) The comparison between the effects of applying different techniques on the total running time to generate RE’s for all the scenes as
shown in Fig. 2.2.
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(b) The effect of applying all the techniques on the total running time to generate RE’s for all the scenes as shown in Fig. 2.2.

Figure 3.12: The effect of applying
different techniques on the total run-
ning time. “Original” = brutal force
algorithm; “PruneSearch” = the algo-
rithm after speeding up the search pro-
cess; “PruneMatch” = the algorithm after
speeding up the isomorphism process;
“Commutative” = the algorithm after re-
ducing the size of the REG graph.

“on the left/right/top/boĴom half of the table” and “on the center of the
table.”

Binary Relative Qualitative Constraint A binary relative qualitative con-
straint represents the qualitative spatial relation between two objects. We
use spatial relations instead of absolute (x, y) coordinates for the ease
of natural language generation because people identify target objects by
referring to landmarks via spatial relations, e.g. “the target object is on
the left to the green block” or “far from the red block.” Qualitative spa-
tial relations consist of orientation and distance 15,16 [Renz and Nebel, 15 We include orientation and distance as

spatial relations because orientation and
distance interact with each other, e.g.dis-
tance cannot usually be summed unless
they are in the same direction [Cohn and
Renz, 2008].
16 Topology is the third type of spatial
relation according to Renz and Nebel
[2007]. But we don’t consider topology
because we treat each object as point par-
ticle while topological relations are usu-
ally described between spatial regions
rather than points.

2007]. Qualitative distance qualitatively describes the distance between
two objects, e.g. “A is touching B”, “A is close/far from B”. Qualitative
relative orientation qualitatively describes the quaternary direction be-
tween two objects, e.g. “A is in front of B”,“A is behind B”,“A is on the
left/right to B”

Binary Relative Quantitative Constraint An binary relative qualitative
constraint represents a low-level feature - quantitative spatial relationwhich



quantitatively states the relative position between two objects. Similar
to qualitative spatial relations, we categorize quantitative spatial rela-
tions based on whether the relation refers to distance or orientation.
Quantitative distance states the precise distance between two objects, e.g.
“object 1 is 2 cm away from object 2” as shown in Fig. 3.13(c). Quantita-
tive relative orientation quantitatively describes the direction of the vector
from the landmark object to the target object, e.g. “object 1 is 60◦ north
of east in the view of object 2” as shown in Fig. 3.13(c).

N-ary Relative Qualitative Constraint An n-ary relative qualitative con-
straint represents a container [Paul et al., 2016] of more than two objects,
all of which share some common object properties or similar positions,
e.g., “a cluster/pair of objects”, “a string/column/stack/row of objects”,
and “objects form a diamond/rectangle/square/triangle.”

Hierarchical REG Structure We propose to model referring expressions
as constraints in a scene (O,C), in which O is a set of objects, C is a set of
constraints over O. C includes object properties, i.e. unary constraints,
denoted asC1 and object relations, i.e. binary constraints denoted asC2,
and n-ary constraints denoted as Cn. We build a labeled directed multi-
graph to support semantic expressiveness, where each node represents
an object and each edge represents a constraint. This graph is similar
to the REG graph which only supports unary absolute qualitative con-
straints and binary relative qualitative constraints [Krahmer et al., 2003].
To incorporate n-ary relative qualitative constraints and binary relative
quantitative constraints as we mentioned previously, we will extend the
current REG graph to a semantic hierarchy [Kuipers, 2000]. This is in-
spired by human cognitive map, which separates spatial information to
power the flexibility and robustness in expression [Kuipers, 2000].

Our world model is a hierarchy G = {GM , GS , GA}, which consists
of three layers. Each layer is a labeled graph denoted asG(V,E, LV , LE ,ϕ),
where V is a set of vertices; E ⊆ V × V is a set of edges; LV and LE are
sets of vertex labels and edge labels respectively; and ϕ is a label func-
tion that defines the mappings V → LV and E → LE .

The three layers include the quantitative layerGM (V,EM , LV , LM
E ,ϕM ),

the qualitative layerGS(V,ES , LV , LS
E ,ϕ

S), and the abstract layerGA(V,EA, LV , LA
E ,ϕ

A).
Each layer is a local graph structure, which defines a type of representa-
tion of objects in a world, similar to a REG graph [Krahmer et al., 2003].
Each vertex v ∈ V is 1-1 mapped to an object o ∈ O , denoted in Equ.
3.2. Each edge, self-loop, binary edge, or n-ary edge, e ∈ EM ∪ES ∪EA

is 1-1 mapped to a constraint c ∈ C , denoted in Equ. 3.2.
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Vertex: v ∈ V ⇔ o ∈ O (3.2)

Self-loop: e(vi) ∈ EM ∪ ES ∪ EA ⇔ (vi → vi) in graph⇔ c(oi) ∈ C1

e.g. In Fig. 3.13(e), e(v1)⇔ c(o1)⇔ “o1 is purple. ”

Binary edge: e(vi, vj) ∈ EM ∪ ES ∪ EA ⇔ (vi → vj) in graph⇔ c(oi, oj) ∈ C2

e.g. In Fig. 3.13(e), e(v1, v2)⇔ c(o1, o2)⇔ “o1 is on the right to o2.”

N-ary edge: e(vi, ..., vk) ∈ EM ∪ ES ∪ EA ⇔ c(oi, ..., ok) ∈ Cn (n > 2)

e.g. In Fig. 3.13(f), e(v1, v2, v3)⇔ c(o1, o2, o3)⇔ “o1, o2, o3 are in a line.”

Quantitative layer

Qualitative layer

Abstract layer

(a) Scene. (b) Hierarchy. (c) Quantitative Spatial Relation.
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(d) Quantitative layer of graph. (e) Qualitative layer of graph. (f) Abstract layer of graph.
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(g) Quantitative layer of subgraph. (h) Qualitative layer of subgraph. (i) Abstract layer of subgraph.
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Figure 3.13: We reason about spatial rela-
tions using a hierarchical structure as in-
dicated in (b) where abstract and qualita-
tive layers are initialized and updated by
the quantitative layer. The three layers
for the scene as shown in (a) are quantita-
tive layer (d), qualitative layer (e), and ab-
stract layer (f). In particular, each edge in
the quantitative layer as shown in (d) rep-
resents both the direction and distance
between the two objects based on the rea-
soning described in (c).

Quantitative Layer A quantitative layer is a graphGM (V,EM , LV , LM
E ,ϕM ).

Its binary edges⊆ EM represent binary relative quantitative constraints
⊆ C2, including quantitative distances, e.g. “object 1 is 2 cm away from
object 2” and quantitative relative orientations, e.g. “object 1 is 180◦

north of east in the view of object 2”. Because a quantitative relation
represent a direction from the landmark object to the target object, e.g.
“the target object is 180◦ north of east in the view of the landmark ob-
ject”, the graph is directed. Because there could be multiple edges be-
tween the same pair of objects, the graph is defined as a multigraph.
Fig. 3.13(d) is an example quantitative layer describing the scene in Fig.
3.13(a).



We need quantitative layer to integrate the ambiguities of the quali-
tative information and the metric precision of the quantitative informa-
tion [Walter et al., 2014]. The quantitative layer stores low-level metric
information that are invariant to perspective change, where EM repre-
sents binary relative quantitative constraints. Since there are so many
different possible n-ary relative qualitative constraints, e.g. “line”, “tri-
angle”, “L shape”, “circle”, and so on, it would be inefficient if we pre-
process all the n-ary constraints in the beginning and save them in the
system. It would be beĴer to dynamically reason about them and deduct
them from other constraints. However, with only qualitative spatial re-
lations, e.g. “right” and “behind”, it is sometimes impossible to reason
and deduce n-ary constraints, e.g. “triangle” and “line” as shown in Fig.
3.14. Therefore, The low-level quantitative information would support
the initialization and update of a qualitative layer and an abstract layer.

(a) (c)(b) (d)

1

2 3
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2

3

3 1

2

triangle

3 1

2

line

(e)
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Figure 3.14: The example to illustrate
that it is necessary to have a quantita-
tive layer. (a) and (e) shows two scenes
which have the same qualitative layer but
different high level features and different
abstract layers. In particular, (a) shows
“the three objects which form a triangle”,
while (e) shows “the three objects in a
line.” Therefore, without a quantitative
layer, qualitative layer alone cannot rep-
resent the gap between these two differ-
ent scenes.

Qualitative Layer The qualitative layer is a graphGS(V,ES , LV , LS
E ,ϕ

S),
which is similar to REG graph [Krahmer et al., 2003]. Its self-loops⊆ ES

represent unary absolute qualitative constraints i.e. C1, e.g. “object 1 is
red.” Its binary edges ⊆ ES represent binary relative qualitative con-
straint ⊆ C2, e.g. “object 1 is on the left to object 2.”

Because a qualitative relation represents a direction from the land-
mark object to the target object, e.g. “the target object is on the left to the
landmark object”, the graph is directed. Because there could be multi-
ple edges between the same pair of objects, such as distance and rela-
tion, the graph is defined as a multigraph. Fig. 3.13(e) is an example
quantitative layer describing the scene in Fig. 3.13(a).

The qualitative relations could be extracted from the quantitative layer,
e.g. “A is far from B” could be deducted from “A is 10 meters far from
B” plus a threshold.

Abstract Layer The abstract layer is a graph GA(V,EA, LV , LA
E ,ϕ

A). Its
n-ary edges EA represent the n-ary relative qualitative constraints ⊆
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Cn, e.g. “in a triangle”, “in an L shape” or “in a cluster of nearby red
blocks”.

These abstract properties defines abstract groups of objects. It is a
bipartite graph structure that represents how vertices (objects) belongs
to different abstract groups.

The abstract properties are extracted from low-level information in a
quantitative layer. For example, a 3-ary feature “a line of three objects”
Fig. 3.13(f) could be deducted from the quantitative angles about 0◦ or
180◦ between each other in the quantitative layer as indicated in Fig.
3.13(d). But it is hard to deduct the 3-ary feature only from the qualita-
tive layer Fig. 3.13(e).

3.4 Future Work

In our implementation, all the visual features and spatial relations are
predefined. But people are varied in defining spatial relations. For ex-
ample, people without cars think that 100miles is a far distance but peo-
ple with cars do not think so. How to exactly model spatial relations,
e.g. “close”, “left to”, “tilted” and “big”, is critical to REG. We could
further optimize clear referring expressions to be more human prefer-
able by building models for these features based on our corpus, and
actively updating the models by incorporating the individual variation
in human-robot interactions.

In a real life, the scene could become very complex due to a large
number of objects and a high similarity between these objects. For ex-
ample in a table in the kitchen, there might be many spoons which look
similar to each other placed randomly on the table. In this situation, the
REG graph might become too complicated so it would take too much
time to search for a clear RE.

One approach is to reduce the size of the REG graph by resolving a
trade-off between graph efficiency and expressiveness. We are seeking
for a minimum structure that supports expressing fully spatial relation
reasoning. We could eliminate unnecessary constraints or edges to im-
prove graph efficiency, while make sure that all the constraints have
their representations in the graph. We aĴempt to apply binary edge
commutativity to eliminate half of the binary edges in the graph. In ad-
dition to that, there are many graph structures we can use, e.g. Relative
Neighborhood Graph [Jaromczyk and Toussaint, 1992] and Delaunay
Triangulation, which represent information efficiently, so that we only
keep a minimum number of edges in the REG graph, but dynamically
re-build the edges or constraints when necessary.

Another approach is to physically change the scene to make the sce-
narios easier for humans and robots to talk about. We can treat this
referring process as a multi-modal interaction between the speaker and



the hearer. One mode is interactive dialog where a robot refers to a
fuzzy region by saying “the blocks on the left.” The human will usu-
ally follow the robot guidance and move their eyesight to focus on the
blocks on the left. By capturing human feedback by eye trackers or mi-
crophones, the robot could predict the uncertainty in this human vi-
sual search task and produce further instructions in natural language to
adapt to the human confusion by assigning probabilities into the REG
graph. Another mode is physical manipulation, where the robot could
manipulate the scene by removing cluĴers to make it easier for it to gen-
erate clear and understandable referring expressions. The robot could
also move an object with a high saliency closer to the target object so
that this object could act as a critical landmark for the robot to refer to.
Another thought here is to make the robot swap an object with a low
visual saliency, but close to the target object, and an object with a high
saliency, but far from the target object, to increase the saliency around
the target object.





4
Generating Explanations as Demonstrations

1 1 This work is done in collaboration with
Rosario ScaliseDifferent robots optimize for different objective functions while sat-

isfy different constraints, but not usually optimize for the ease of human
understanding. Different robot reasoning might lead to the same robot
behavior, which makes it difficult for humans to understand robot pref-
erences, anticipate robot future plans, and adapt to robots in advance for
safe [Alami et al., 2006a] and effective collaboration [Fisac et al., 2016].
Consider the trajectory shown in Fig. 4.1. It appears that the robot does
its best to avoid rocks while navigating to the goal, implying it has a
preference for traversing grassy states over rocky states. However, this
trajectory could have also been generated by a robot with an objective
function that has no preference for either terrain type if it arbitrarily
chose where to turn. Similarly, a person observing the robot in Fig. 4.2
may be unclear about whether the robot has no terrain preference or a
strong preference for grass.

In a system where language is not available, such as a noisy airport or
a quiet library, to describe a task which is hard to be explained in natu-
ral language, such as tying our shoes, a robot could use demonstration-
based explanations to help people understand the system and its task.
prior work has focused on using robot motion to effectively convey
robot capabilities and goals [Nikolaidis et al., 2017a, Dragan et al., 2013].
In contrast, we focus on using robot motion to convey its own objective
function and show that it prefers to navigate through states with par-
ticular features.

We are interested in producing robot motion trajectories that help
people understand the robot’s feature preferences and that improve
their ability to generalize that behavior to new environments. Based on
the observation that people assign rational meaning to agent actions [Gergely
et al., 1995, DenneĴ, 1989, Kamewari et al., 2005], we define two types
of critical points in a trajectory, inflection points and compromise points,
as points that are information-rich and convey information about the
relationship between the planned trajectory and the features in the en-
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vironment. Fig. 4.1 is an extreme example of how inflection points (i.e.,
changes in direction) may lead an observer to infer preference for grass
because the trajectory traverses only that terrain feature. The single rock
compromise point in Fig. 4.2 may similarly lead an observer to believe
there is no preference for grass over rocks when in fact all alternative
paths have more rocks and therefore a lower overall value.

Figure 4.1: Many possible objective func-
tions could generate this trajectory.

Figure 4.2: Many possible objective func-
tions could generate this trajectory.

4.1 Related Work

Towards the goal of helping people accurately understand robot behav-
ior, prior research has focused on ways to plan robot motion that is more
interpretable or understandable to humans. Nikolaidis et al. [2017a]
have contributed action planning algorithms that allow their robot to
reveal its capabilities adaptively through a game theoretic model of hu-
man expectations. SciuĴi et al. [2014], Zhou et al. [2017] have devel-
oped expressive robotic lifting motions to help humans understand the
weights of the objects that robots are manipulating. The ease with which
a person could recognize a robot’s goals by observing its action execu-
tion improves robot legibility [Dragan et al., 2013, Dragan and Srinivasa,
2014], predictability [Fisac et al., 2016], acceptance [Cha et al., 2015], and
naturalness [Szafir et al., 2014], which are important for human recog-
nition of robot tasks [Zhang et al., 2016] and human-robot collabora-
tion [Powers and Kiesler, 2006, Gielniak et al., 2013]. However, the prior
works aim to make current executed behavior and goals more under-
standable and does not focus on helping people more easily predict fu-
ture actions and generalize current behavior to new environments.

Our approach to making robot behavior more understandable is to
communicate robot preferences for different states or state features (robot
reward function) via robot actions. Inspired by the idea that people at-
tribute decision-making at critical points in behaviors to rationality [Cha-
jewska et al., 2000], we propose critical points along a trajectory that
could be more informative than others about the robot’s preferences.
We analyze how these critical points in a trajectory affect a person’s un-
derstanding of the robot’s reward function by systematically creating
demonstration trajectories with particular sets of points. The demon-
strations (either in simulations like ours or real robots like Nicolescu
and Mataric [2003]) motivate people to observe new robot behaviors
and infer the robot’s preferences [Zhang and Parkes, 2008]. We think
demonstration as another medium of robot explanation, i.e. demonstration-
based explanation, in addition to language-based explanation.



4.2 Problem Formulation

We formulate our robots’ behaviors as a standard Markov Decision Pro-
cess [Puterman, 2014] which is a tuple of the form: {S,A, T , R}.

This includes a set of world states s ∈ S with a single absorbing goal
state sg ∈ S and a set of robot actions a ∈ A. The MDP has a determin-
istic state transition function T : S ×A→ S and an immediate reward
function R : S → R+. A robot behaves according to a deterministic
policy π : S → A. The optimal policy is denoted as π∗ and describes
the policy that maximizes the overall reward.

A trajectory ξ(s0|π) ∈ Ξ is defined as a sequence of states [s0, s1, s2, ..., sg]
where ∀st ∈ ξ(s0|π), T (st−1,π(st−1)) = st. The total reward of ξ is
Rξ(ξ) =

∑
st∈ξ R(st). An optimal trajectory ξ∗ is yielded by following

π∗.
To ensure there are no cycles in a trajectory, there is one and only one

s ∈ S such that R(s) ≥ 0.

Experimental Setup

As an example domain, we consider a gridworld representation of a
park which has a single terrain feature such as grass or rock assigned to
each state (tile) on the grid.

Figure 4.3: An inflection point indicated
as the red dot (the black dot under the red
dot is another inflection point).

Figure 4.4: A compromise point indi-
cated as the yellow dot.

◦ State s ∈ S is defined as s = (x, y)

◦ Action a is a 4-connected movement where a ∈ A = {→, ↑, ↓,←}
◦ We define φ : S → N3

+ as a mapping from states to features. φ(s) =
[1goal(s), 1grass(s), 1rock(s)] ∈ {0, 1}3 subject to ∥φ(s)∥ = 1, where each
1(s) is an indicator function (e.g., 1grass(s) = 1 if the tile type at s is
grass and 1grass(s) = 0 otherwise)

◦ We define T as a transition mapping with deterministic 4-connected
movements within the gridworld.

◦ θ ∈ R3 are the weights for the feature vector φ. The reward for a state
s with weights θ is given by R(θ, s) = θ φ(s) ∈ R.

◦ When deriving the optimal policy, we break action ties with the or-
dering [→, ↑, ↓,←].

Critical Points of Trajectories

Depending on a robot’s functional objective, the trajectory it follows can
vary significantly. We characterize the information-rich states and ac-
tions within a trajectory as critical points. Based on the rationality prin-
ciple, we focus on two types of critical points – inflection points in which
people assign meaning to changing direction and compromise points in
which a robot traverses over states with different features. Although
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this set of characteristics is not exhaustive, we believe it provides an ef-
fective starting point in analyzing trajectories. We will demonstrate that
critical points can be beneficial in guiding the observer’s understanding
of robot behavior, or they can be detrimental to an observer’s under-
standing, confounding their beliefs and leading to misinterpretation.

Inflection Points

Inflection points are defined as st ∈ ξ(s0|π) where the robot changes its
direction. In other words, inflection points are all points at which the
robot’s action is not identical to its prior action, i.e., π(st−1) ̸= π(st)). In
Fig. 4.3, an inflection point is indicated by the red dot where the robot
moves down. This change of behavior gives people information about
the robot’s aversion towards the rock tile annotated as 1. In our park
environment, inflection points come in pairs, e.g., there is another in-
flection point indicated as the black dot right under the red dot in Fig.
4.3, because the robot typically resumes moving rightward after chang-
ing direction.

Compromise Points

Compromise points are defined as states st ∈ ξ∗(s0|π∗) in which the my-
opic reward of entering st is not the maximum obtainable from st−1, yet
the total reward for the trajectory is maximized. In particular, ∃ at−1 ∈
A, at−1 ̸= π∗(st−1), T (st−1, at−1) = s′t.s.t.R(s′t) > R(st), but Rξ(ξ∗(s′t|π∗)) <

Rξ(ξ∗(st|π∗)).
The trajectory in Fig. 4.4 contains one compromise point (orange dot).

To reach the goal, the robot must traverse a terrain feature, e.g. rock,
which incurs a higher cost than another possible terrain feature (grass)
accessible from the previous state. Any aĴempt to move around the
rock frontier would result in lower total trajectory reward compared to
the straight path over the one compromise point.

4.3 Generating Demonstrations

We develop a method for synthesizing trajectories through environ-
ments that demonstrate the robot’s reward functionR(θ, s) by changing
φ by iteratively inserting inflection and compromise points into the tra-
jectory ξ∗.

Inflection Points

To create an inflection point at si ∈ ξ∗(s0|π∗), we can decrease the re-
ward of si+1 which alters π∗(si) to avoid si+1. In Fig. 4.5, grass is pre-



ferred and has lower cost than rock. To create an inflection point at si
indicated as the red dot, we place a rock terrain tile at si+1 annotated as
state 1.

Figure 4.5: Generating 1 inflection point
(red dot) by placing rock tiles at state 1
and 2.

Figure 4.6: 4 inflection points (red dots).

Figure 4.7: Generating 1 compromise
point (orange dot) by building a frontier
(orange line segments).

Figure 4.8: 4 compromise points (orange
dots).

One side effect of changing state 1 is that it might introduce multiple
optimal policies yielding multiple optimal trajectories. The ambiguity
of multiple optimal trajectories (or policies) can mislead people as it re-
quires more complex reasoning to identify. One solution is to change
some states to make all but one of the optimal trajectories sub-optimal.
We treat this as a set cover problem. Universe U is the set of all the avail-
able optimal trajectories U = {ξ|ξ = ξ∗ ← π∗}. ∀ state s ∈ ξ ∈ U, we
define S(s) ⊆ U to include all the optimal trajectories that go through
s, i.e., S(s) = {ξ|s ∈ ξ ∈ U}. The family set contains all the F(s), i.e.,
F = {S(s)|s ∈ ξ ∈ U} s.t.

⋃
ss∈F(s) ss = U.

Our goal is to find the minimum number of states that all but one of
the optimal paths go through, i.e., to find the minimal set C of states
subject to

⋃
cc∈C S(cc) = U\ξ∗∗ where ξ∗∗ ∈ U is the only path s.t. ∀cc ∈

cover, ξ∗∗ /∈ S(cc). Then when we have a set C, ∀s ∈ C, we can reduce
R(s) to make all the ξ ∈ S(s) become sub-optimal and leave ξ∗∗ the only
optimal trajectory.

In Fig. 4.5, there are 9 extra optimal trajectories available after chang-
ing states 1 (yellow arrows). By placing a rock terrain at state 2, we
could prevent the robot from moving downwards before reaching the
red dot and make the trajectory indicated by black dots the only opti-
mal trajectory. We generate 4 inflection points accordingly as shown in
Fig. 4.6.

Compromise Points

Similar to generating an inflection point, to generate a compromise point
at si ∈ ξ∗(s0|π∗), we could decrease the reward of si+1 s.t. R(si+1) <

Rmax. But the difference is that now we want robots to keep π∗(si) and
head to si+1 inevitably. Hence, we could decrease the rewards of a set of
states in a neighboring area close to si+1 to make it too costly for robots
to detour around si+1. We could initiate the area as one state and iter-
atively increase its size until the new optimal trajectory passes through
si+1. In each iteration, we could grow the area by making all the optimal
trajectories which do not go through si+1 become sub-optimal using the
same technique we introduced in Sec. 4.3. Inflection Points.

In Fig. 4.7, to create an compromise point at si (orange dot), we can
build a frontier of states filled with rock terrain from top to boĴom
for a certain length (orange frontier). This frontier with low reward
will force the robot to pass through si+1 and follow the trajectory in-
dicated as the black dots. In our implementation, we use cubic Bezier
curves [Farin, 2006] randomly generated through De Casteljau’s Algo-
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rithm [Farin, 2014] to represent natural-looking frontiers. We generate
4 compromise points accordingly as shown in Fig. 4.8.

Extra Points

We uniformly distribute different φ’s across our demonstration maps
to so that all the maps are consistent with each other regarding the fre-
quency of each feature. In our implementation, we ensure that each
map contains 50% rocks and 50% grass adding complementary rock
tiles to grass-dominant maps and vice versa. To make maps look natu-
ral, we place terrain types based on 2D Perlin noise [Perlin, 1985, Perlin
and Hoffert, 1989, Perlin, 2002]. Final maps and trajectories are shown
in Fig. 4.9.

Generated Demonstrations

We have used the algorithm in Sec. 4.3 to create the maps for our study.
We show some of the maps in Fig. 4.9. Note that we did not show the
maps where the robots prefer rock because we can get the maps where
the robots prefer rocks by replacing all the rocks with grass and all the
grass with rocks in maps where the robots prefer grass.



(a) Prefer grass, 0 infl, 0 comp. (b) Prefer grass, 0 infl, 4 comp. (c) Prefer grass, 2 infl, 0 comp.

(d) Prefer grass, 2 infl, 4 comp. (e) Prefer grass, 4 infl, 0 comp. (f) Prefer grass, 4 infl, 4 comp.

(g) No pref., 0 infl, 0 comp. (h) No pref., 0 infl, 4 comp. (i) No pref., 2 infl, diff, 0 comp.

(j) No pref., 2 infl, diff, 4 comp. (k) No pref., 2 infl, same, 4 comp. (l) No pref., 4 infl, diff, 4 comp.

Figure 4.9: Robot preference type, num-
ber of inflection points (red dots), inflec-
tion point configuration (when the robots
have no preference, inflection points with
diff configuration = blue dots, inflec-
tion points with same configuration = red
dots), number of compromise points (or-
ange dots) for demonstration examples.





5
Evaluating Explanations as Demonstrations

1 1 This work is done in collaboration with
Rosario ScaliseWe ran a study to test the effects of the demonstration-based explana-

tions in Sec. 4 with different critical points along trajectories on human
understanding of robot terrain preferences. Our goal is to determine,
in detail, the roles critical points play in trajectories that lead to good
understanding of robot behavior. Towards this, we conducted a large-
scale study to systematically examine how varying the critical points in
trajectories affects peoples’ understandings of robot behaviors.

We generated trajectories through synthetic environments according
to different robot behaviors and showed them to people via Amazon
Mechanical Turk. We conducted a within-subjects study in which we
varied the parameterizations of the robot’s reward function as well as
the combinations of critical points along each trajectory and asked peo-
ple to specify their understandings as well as generalize new plans in
different environments. We show that people understand and can gen-
eralize the robot’s terrain preferences more accurately as the number
of inflection points increases and compromise points decreases within
trajectories. However, when a robot has no preference for terrain types,
the addition of either type of critical point within a trajectory reduces a
participant’s understanding.

We conclude that our critical points in trajectories do provide ob-
servers more information about a robot’s state preferences. A robot that
can take these points into consideration while planning its trajectories
can reduce observer uncertainty about its behavior while still acting op-
timally.

5.1 User Study

Independent Variables

We tested six terrain preference conditions and ten no-preference condi-
tions. The six preference conditions comprise all combinations of {0, 2, 4}
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inflection and {0, 4} compromise points. The no-preference conditions
are combinations of {0, 2, 4} inflection points, {0, 4} compromise points,
and {same, different} inflection point configurations 2. 2 When there are no inflection points,

there are no inflection point configura-
tions, hence there are 10 ‘no preference’
maps instead of 12.Terrain Preferences We compared trajectories through maps when there

is a terrain feature preference versus when there was no preference be-
tween terrain features. We randomly selected half of the terrain prefer-
ence conditions to prefer rock and half to prefer grass. For example,

◦ In the demonstrations Fig. 4.9(a), Fig. 4.9(b), Fig. 4.9(c), Fig. 4.9(d),
Fig. 4.9(e), Fig. 4.9(f), the robots prefer grass.

◦ We do not show the maps where the robots prefer rock because they
are symmetric with the maps where the robots prefer grass. We can
switch grass with rocks to get a map with the other preference.

◦ In the demonstrations, Fig. 4.9(g), Fig. 4.9(h), Fig. 4.9(i), Fig. 4.9(j),
Fig. 4.9(k), Fig. 4.9(l), the robots have no preference.

Inflection Points Each demonstration trajectory had 0, 2, or 4 inflection
points. Locations of the inflection points were randomly chosen along
the path.

◦ The demonstrations in Fig. 4.9(a), Fig. 4.9(b), Fig. 4.9(g), Fig. 4.9(h),
have 0 inflection points.

◦ The demonstrations in Fig. 4.9(d), Fig. 4.9(c), Fig. 4.9(i), Fig. 4.9(j), Fig.
4.9(k), have 2 inflection points.

◦ The demonstrations in Fig. 4.9(e), Fig. 4.9(f), Fig. 4.9(l), have 4 inflec-
tion points.

Compromise Points We set the number of compromise points in each
demonstration trajectory to be one of two values. When the reward
function had preferences, these two values were {0, 4}. We were in-
terested in observing the differences between having no compromise
points versus having several points where the robot must “make a com-
promise”. The number of compromise points is 20% of the total trajec-
tory length. When the reward function had no preferences, compro-
mises could not technically occur. Therefore, we arbitrarily assigned
a “simulated” preference and then divided the number of terrain fea-
tures along the trajectory in the two levels: {50− 50, 20− 80}. The for-
mer level resulted in a trajectory where there was no preference illus-
trated by compromise points. The laĴer resulted in a trajectory where
the robot simulated a compromise on 20% of the states.

◦ The demonstrations in Fig. 4.9(a), Fig. 4.9(c), Fig. 4.9(e), have 0 com-
promise points when the robots have preferences.



◦ The demonstrations in Fig. 4.9(b), Fig. 4.9(d), Fig. 4.9(f), have 4 com-
promise points when the robots have preferences.

◦ The demonstrations in Fig. 4.9(g), Fig. 4.9(i), have 0 compromise points
when the robots have no preferences.

◦ The demonstrations in Fig. 4.9(h), Fig. 4.9(j), Fig. 4.9(k), Fig. 4.9(l),
have 4 compromise points, i.e. 20−80 terrain type distribution along
the trajectories, when the robots have no preferences.

Inflection Point Configuration At each inflection point, there is a ‘deci-
sion’ corresponding to the change in direction. The robot’s direction
switches from continuing onto one tile (B in both Fig. 5.1 and Fig. 5.2)
to moving onto another tile (C in both Fig. 5.1 and Fig. 5.2). We test
whether human understanding changes if the terrain types of those tiles
are the same, e.g., the robot chooses to turn from one grass tile to another
grass tile, as shown in Fig. 5.1 or diff, e.g., the robot turns from a grass
tile onto a rock tile, as shown in Fig. 5.2. This condition is only tested
when there is no preference in the terrain type and there are inflection
points along the trajectories.

Figure 5.1: An inflection point with same
configuration.

Figure 5.2: An inflection point with diff
configuration.

◦ The inflection points in Fig. 4.9(k), have same configuration when the
robots have no preferences and there are inflection points along the
trajectories.

◦ The inflection points in Fig. 4.9(i), Fig. 4.9(j), Fig. 4.9(l), have diff
configuration when the robots have no preferences and there are in-
flection points along the trajectories.

Response Types

Sliders We included a slider for each terrain feature type and labeled
them {“Strongly Avoid”, “Slightly Avoid”, “Neutral”, “Slightly Prefer”,
“Strongly Prefer”}. We asked participants to indicate the preference the
robot had demonstrated for each terrain type using the sliders. Par-
ticipants were free to place the sliders anywhere along the scale. We
mapped their slider placements to a value between [0, 1000], where 0

corresponds to “Strongly Avoid”, 500 corresponds to “Neutral”, and
1000 corresponds to “Strongly Prefer”.

Text Free-Response Participants were asked to explain the reasoning
they believe the robot used as it planned its path through the map. Un-
like the sliders, free response allows an unconstrained representation
of the users’ mental models of the robot behaviors. Due to space con-
straints, we do not present the results from the free response.
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Drawing Trajectories Last, we presented the participants with a new
map (without a demonstration trajectory pre-drawn on it) and asked
them to draw the trajectory they believed the robot would take if it
were using the same reasoning to plan its new trajectory. Participants
were required to start at a predefined point and could add 4-connected
waypoints until reaching the goal position. Each map was generated
to ensure it had a single optimal trajectory with respect to a fixed ter-
rain preference. The maps were filled 50/50 with rock and grass tiles.
In order to reduce the bias in our test maps, each participant received
a randomized test map for each experimental condition. This measure
allowed us to test participants’ understanding of the robot’s behaviors
by comparing their drawn path to the optimal one.

Subjective Confidence We asked participants to indicate on a 5-point
Likert scale how confident they were that the trajectory they drew would
be the one the robot would take.

Dependent Variables

Our measures of accuracy in understanding robot preferences are based
on the drawn trajectories, sliders, and subjective ratings of confidence.

Optimality Ratio The optimality ratio= | total cost of optimal trajectory
total cost of user drawn trajectory | ∈ [0, 1].

As people understand the robot reward function more accurately, the
optimality ratio increases.

Preference Range We assume that people use the distance between the
grass and rock slider placements to indicate their certainty about in-
ferring the robot preferences. We map the distance between the grass
and rock slider placements to preference range ∈ [0, 2000]. A value of 0
corresponds to the user inferring no preference between the grass and
rock terrains while a value of 2000 corresponds to the user inferring a
difference with a high certainty, regardless of what the robot actually
prefers.

We map the user slider placement for grass sgrass to [0, 1000], the
user placement for rock srock to [0, 1000]. Then we define the preference
range p as in Equ. 5.1, so that in all the 3 conditions, the larger p is, the
more certainty the users have in their understandings of the robot pref-
erences.

p =

⎧
⎪⎪⎨

⎪⎪⎩

sgrass − srock + 1000 ∈ [0, 2000] if the robot prefers grass

srock − sgrass + 1000 ∈ [0, 2000] if the robot prefers rock

2× (1000− |sgrass − srock| ∈ [0, 2000] if the robot has no preferences
(5.1)



Subjective Confidence We use subjective confidence ∈ {1, 2, 3, 4, 5} to rep-
resent the user’s self-reported confidence in understanding robot rea-
soning, with higher values indicating more confidence.

Hypotheses

H1 When Robots have preferences, the more inflection points, the higher
optimality ratio, preference range, and subjective confidence.

H2 When Robots have preferences, the more compromise points, the
lower optimality ratio, preference range, and subjective confidence.

H3 When Robots have no preferences, the more inflection points, the
lower optimality ratio, preference range, and subjective confidence.

H4 When Robots have no preferences, the more compromise points,
the lower optimality ratio, preference range, and subjective confi-
dence.

H5 When Robots have no preferences, the optimality ratio, preference
range, and subjective confidence are lower when each inflection point
has a diff configuration than when each inflection point has a same
configuration.

Study Deployment

We recruited 90 participants via Amazon Mechanical Turk. We used a
within-subjects design where each subject was shown the total 16 con-
ditions (6 + 10) in the same order. This order was pre-determined to
ensure that no three consecutive conditions had the same terrain prefer-
ence, which allowed us to avoid users inferring incorrectly based on co-
incidental paĴerns. Upon completion of the study, we collected demo-
graphic information from participants, including their age, gender, oc-
cupation, primary language, and experience with robots, video games,
and RC-cars. We also asked for general comments as well as how dif-
ficult they found the tasks. Due to space constraints, these results are
omiĴed.

5.2 Results

Preference

Optimality Ratio We use a two-way repeated measures ANOVA to find
the effect of inflection points and compromise points on optimality ratio
(Table. 5.2).

The number of inflection points has a significant effect on the opti-
mality ratio (F (2, 178) = 46.159, p < 0.001). Post hoc analysis with a
Bonferroni adjustment reveals that the optimality ratio is significantly
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I Optimality ratio vs different conditions.
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II Preference range vs different conditions.
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III Subjective confidence vs different conditions.

Figure 5.3: When there is a preference,
optimality ratio / preference range / subjec-
tive confidence vs (a) the number of in-
flection points (b) the number of com-
promise points (c) the interaction be-
tween the number of inflection points
and compromise points. When there
is no preference,optimality ratio / prefer-
ence range / subjective confidence vs (d) the
number of inflection points (e) the num-
ber of compromise points (f) the inter-
action between the number of inflection
points and compromise points (g) inflec-
tion point configuration

increased from 0 to 2 (p < 0.001) and from 0 to 4 (p < 0.001), but not
from 2 to 4 inflection points (p = 0.052), though it is close (Fig. 5.3I(a)).
This suggests that inflection points help users understand robot prefer-
ences. For example, it is easier for people to understand that the robot
prefers grass over rock terrains by looking at Fig. 4.9(c) than Fig. 4.9(a).
Additionally, in these maps there is liĴle benefit to demonstrating the
situation with more than 2 inflection points. For example, it is not much
easier for people to understand that the robot prefers grass over rock
terrains by looking at Fig. 4.9(e) than Fig. 4.9(c) although Fig. 4.9(e) has
more inflection points. The first part of H1 is supported.

The optimality ratio is significantly decreased from 0 to 4 compro-
mise points (F (1, 89) = 74.476, p < 0.001) (Fig. 5.3I(b)). For example, it
is easier for people to understand that the robot prefers grass over rock
terrains by looking at Fig. 4.9(c) than Fig. 4.9(d). The first part of H2 is
supported.

There is a significant interaction between the numbers of inflection
and compromise points on optimality ratio (F (2, 178) = 5.291, p =



0.006). When there are no compromise points, there is no significant
difference between 2 and 4 inflection points (p = 0.730). However,
when there are 4 compromise points, optimality ratio is significantly
increased from 2 to 4 inflection points (p = 0.001) (Fig. 5.3I(c)). This in-
dicates that as the number of compromise points increases, people need
more inflection points to mitigate their confusion about the compromise
points. For example, it is easier for people to understand that the robot
prefers grass over rock terrains by looking at Fig. 4.9(f) than Fig. 4.9(d).

Preference Range We used a two-way repeated measures ANOVA to
determine the effects of inflection points and compromise points on
preference range (Table. 5.2).

The number of inflection points has a significant effect on preference
range (F (2, 178) = 65.759, p < 0.001). A post hoc analysis with a Bon-
ferroni adjustment reveals that the preference range is significantly in-
creased from 0 to 2 (p < 0.001) and from 0 to 4 (p < 0.001), but not from
2 to 4 (p = 0.385) inflection points (Fig. 5.3II(a)). This suggests that more
inflection points lead to greater certainty about the robot’s preference.
Similar to optimality ratio, increasing beyond 2 inflection points does
not improve preference range. The second part of H1 is supported.

Preference range is also significantly decreased from 0 to 4 compro-
mise points (F (1, 89) = 91.050, p < 0.001) (Fig. 5.3II(b)). The second
part of H2 is supported.

There are no other significant effects on preference range.

Subjective Confidence To measure the effect of inflection and compro-
mise points on the Likert scale responses for subjective confidence, we
ran a generalized ordinal logistic model and estimated the model pa-
rameters through a generalized estimating equation (GEE) with AR(1)
covariance structure (Table. 5.2).

Subjective confidence significantly increased from 0 to 2 (p = 0.009)

and from 0 to 4 (p = 0.001), but not from 2 to 4 (p = 0.907) inflection
points (Fig. 5.3III(a)). This suggests that inflection points help people
feel more confident about their evaluations, but that increasing beyond
2 inflection points does not necessarily lead to more confidence. The
third part of H1 is supported.

Subjective confidence is significantly increased from 0 to 4 compro-
mise points (p = 0.009) (Fig. 5.3III(b)). Interestingly, the third part of
H2 is rejected.

There are no other significant effects for subjective confidence.
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Optimality Ratio Preference Range Subjective Confidence

0 Comp 4 Comp 0 Comp 4 Comp 0 Comp 4 Comp

0 Infl 0.62(0.24) 0.51(0.18) 1530(391) 1271(324) 2.81(0.97) 3.17(1.07)

2 Infl 0.81(0.18) 0.62(0.21) 1860(265) 1544(298) 3.27(0.92) 3.56(0.96)

4 Infl 0.80(0.19) 0.72(0.19) 1861(286) 1626(304) 3.34(1.04) 3.57(0.89)

Table 5.1: Mean (std. dev.) optimality ra-
tio, preference range, and subjective con-
fidence for preference maps

No Preference

Analysis for no preference maps follows the analysis for preference maps
above. Results for inflection point configuration are only available for
demonstrations with 2 or 4 inflection points, since 0 inflection points
mean there cannot be inflection point configurations.

Optimality Ratio. We conducted a three-way repeated measures ANOVA
to determine the effect of inflection points, compromise points, and in-
flection point configuration on optimality ratio (Table. 5.2).

The number of inflection points has a significant effect on optimality
ratio (F (2, 178) = 42.050, p < 0.001). Post hoc analysis with a Bonfer-
roni adjustment reveals that optimality ratio is significantly decreased
from 0 to 2 (p < 0.001), from 0 to 4 (p < 0.001), and from 2 to 4
(p < 0.001) inflection points (Fig. 5.3I(d)). This suggests that people’s
ability to identify the robot’s true preferences continues to decrease as
inflection points are added. For example, it is easier for people to un-
derstand that the robot has no preference by looking at Fig. 4.9(g) than
Fig. 4.9(i). The first part of H3 is supported.

Optimality ratio is significantly decreased from 0 to 4 compromise
points (F (1, 89) = 62.649, p < 0.001) (Fig. 5.3I(e)), For example, it is
easier for people to understand that the robot has no preference from
Fig. 4.9(g) than Fig. 4.9(h). The first part of H4 is supported.

There is a significant interaction between the numbers of inflection
and compromise points on optimality ratio (F (2, 178) = 12.652, p <

0.001). When the number of compromise points is high, the optimality
ratio is significantly decreased from 2 to 4 inflection points (p < 0.001),
while when number of compromise points is low, there is no significant
difference (p = 0.883) (Fig. 5.3I(f)). This indicates that when there are
many compromise points, more inflection points exacerbates the detri-
mental effect of compromise points on optimality ratio, while when the
number of compromise points is low, the detrimental effect is gone.

Optimality ratio is significantly higher when inflection points have
same configuration than when they have diff configuration (F (1, 89) =

12.793, p = 0.001) (Fig. 5.3I(g)). This indicates that for maps without a
preference, inflection points that move to the same type of terrain beĴer



reveal the robot’s true (lack of) preference. For example, it is easier for
people to understand that the robot has no preference by looking at Fig.
4.9(k) than Fig. 4.9(j). The first part of H5 is supported.

No other significant results were found.

0 Compromise 4 Compromise

Same Different Same Different

0 Inflection 0.99 (0.04) 0.99 (0.04) 0.95 (0.08) 0.95 (0.08)

2 Inflection 0.95 (0.06) 0.95 (0.07) 0.91 (0.10) 0.87 (0.10)

4 Inflection 0.95 (0.07) 0.93 (0.08) 0.86 (0.11) 0.83 (0.09)

Table 5.2: Mean (std. dev.) optimality ra-
tio for no preference maps

Preference Range.

We use a three-way repeated measures ANOVA to determine the effect
of the number of inflection points, compromise points, and inflection
point configuration on preference range (Table. 5.2).

The number of inflection points has a significant effect on preference
range (F (2, 178) = 67.728, p < 0.001). Post hoc analysis with a Bonfer-
roni adjustment reveals that preference range is significantly decreased
from 0 to 2 (p < 0.001) and from 0 to 4 (p < 0.001), but not from 2 to
4 inflection points (p = 0.069) (Fig. 5.3II(d)). The second part of H3 is
supported.

Preference range is also significantly decreased from 0 to 4 compro-
mise points (F (1, 89) = 181.118, p < 0.001) (Fig. 5.3II(e)). The second
part of H4 is supported.

There is a significant interaction between the numbers of inflection
points and compromise points on preference range (F (2, 178) = 18.848, p <

0.001). When there are 4 compromise points, preference range is sig-
nificantly decreased from 2 to 4 inflection points (p = 0.003), while
when there are 0 compromise points, there is no significant difference
(p = 0.611) (Fig. 5.3II(f)). This indicates that inflection points have a
detrimental effect on preference range only when they are exacerbated
by compromise points, but that without the compromise points there is
no detrimental effect.

Preference range was significantly decreased from same to diff in-
flection point configuration (F (1, 89) = 13.802, p < 0.001) (Fig. 5.3II(g)).
This indicates that for maps without a preference, the preference range
is lower when all inflection points have the diff configuration than
when the same number of inflection points have the same configura-
tion. The second part of H5 is supported.

No other significant differences are found.
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0 Compromise 4 Compromise

Same Different Same Different

0 Inflection 1434 (563) 1434 (563) 1918 (194) 1918 (194)

2 Inflection 1716 (395) 1572 (482) 989 (655) 866 (485)

4 Inflection 1738 (351) 1671 (436) 797 (485) 658 (428)

Table 5.3: Mean (std. dev.) preference
range for no preference maps

Subjective Confidence. To determine the effect of inflection points, com-
promise points, and inflection point configurations on subjective confi-
dence, we conducted a generalized ordinal logistic model and estimated
the model parameters through a generalized estimating equation (GEE)
with AR(1) covariance structure (Table. 5.2).

There is no significant effect of inflection points on subjective confi-
dence (Fig. 5.3III(d)). People are not significantly less confident about
inferring the robot reasoning when dealing with demonstrations with
more inflection points. The third part of H3 is rejected.

Subjective confidence is significantly decreased from 0 to 4 compro-
mise points (p < 0.001) (Fig. 5.3III(e)). People are less confident about
the robot’s reasoning when dealing with demonstrations with more com-
promise points. The third part of H4 is supported.

There were no significant effects of inflection point configuration on
subjective confidence (Fig. 5.3III(g)). The third part of H5 is rejected.

0 Compromise 4 Compromise

Same Different Same Different

0 Inflection 4.24 (0.84) 4.24 (0.84) 3.50 (1.10) 3.50 (1.10)

2 Inflection 3.40 (1.04) 3.59 (0.99) 3.26 (1.13) 3.27 (0.97)

4 Inflection 3.24 (1.13) 3.40 (1.09) 3.37 (1.09) 3.31 (1.06)

Table 5.4: Mean (std. dev.) subjective
confidence for no preference maps

5.3 Future Work

People derive expectations about robot behavior by observing robot tra-
jectories. Our work serves as a basis for enabling robots to use tra-
jectories to convey information about their reward functions. In this
work, we introduce the concept of critical points and give two exam-
ples, inflection points and compromise points. Using these, we de-
velop a method for systematically generating trajectories that possess
the critical points we specify. We then test how trajectories with vary-
ing combinations of critical points affect human understanding of robot
reward functions. We show that inflection points can have different ef-



fects on human understanding depending on whether a robot’s reward
function has particular terrain feature preferences or not. Specifically,
when there is a preference for terrain features, adding inflection points
improves human understanding, while when there is no preference,
adding inflection points hinders understanding. In both cases, increas-
ing the number of compromise points decreases human understanding
of the robot’s preferences.

Interestingly, our results showed that the subjective confidence did
not increase with fewer compromise points as we expected. Future
work is needed to understand why this is the case. For example, it is
possible that if participants never saw the robot navigate over a rock,
they would not be confident about what would happen if it had to nav-
igate over a rock.

Additionally, our results showed that there was a significant effect
of one pair of inflection points but no benefit to the second pair of in-
flection points suggesting that there is a “law of diminishing returns”
in information conveyed by inflections. Because we only investigated
two terrain types, one pair of inflection points is all that is necessary to
indicate which terrain type is preferred. More work is needed to inves-
tigate whether our finding holds for more complex environments. For
example, while we believe that one inflection point is needed to show
relative preference between pairs of features, it is unclear whether the
complexity of the path will overwhelm an observer rather than help
them.

Finally, our study was performed in an online study and not on a real
robot. We acknowledge that it may be difficult to modify real environ-
ments in order for optimal trajectories to include critical points. In envi-
ronments where a real robot cannot demonstrate its reward function by
adding inflection points, for example, it may be possible for the robot
to display a simulated environment with a trajectory, such as those we
generated, to efficiently teach an observer about its preferences. An-
other option may be to demonstrate a non-optimal path that has more
critical points to resolve a tradeoff between trajectory efficiency and
ease of human understanding. Future work is needed to understand
whether our findings translate to real robots in real environments, and
also whether other methods of demonstration are effective.





6
Conclusion and Future Work

People observe robot behaviors, understand robot intentions and pref-
erences, and anticipate their future behaviors. However, as robots be-
come more and more complicated but still rarely optimize their behav-
ior for the ease with which humans understand them, it is more likely
that humans would aĴribute biased reasons to robot behaviors and feel
confused and surprised during collaboration. To make robot behavior
more transparent and explicable, our approach is to enable robots to
proactively give clear language-based explanations about their inten-
tions and clear demonstration-based explanations about their prefer-
ences to humans.

In this thesis, we contribute a set of studies to collect and evaluate
language-based explanations in tabletop manipulation tasks. We find
that clear language-based explanations distinguish target objects from
cluĴers via a set of salient visual features and spatial relations with per-
spective specified explicitly. To generate natural explanations, we en-
ables robots to choose visual features and spatial relations based on the
feature frequencies in our corpus. To make our generated explanations
more varied, consistent, and extensible, we extend the graph structure
for explanation generation from previous work to a hierarchical struc-
ture with both higher and lower levels of information for reasoning. To
make our explanation generation more efficient, we leverage heuristics
from graph isomorphism and constraint satisfaction problem to prune
and guide our search. On the other hand, we introduce the idea of criti-
cal points along robot trajectories which are informative in helping peo-
ple understand robot preferences in grid world navigation tasks. We
fist propose an algorithm to generate explanations about robot prefer-
ences in the form of demonstration with specified numbers of critical
points. We then verify the clarity of our generated demonstration-based
explanations and find that some critical points are beneficial in convey-
ing information about robot preferences while some critical points are
harmful.

We have investigated both language-based and demonstration-based
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explanations. Tradeoffs have to be resolved when choosing to use lan-
guage or demonstrations. Language-based explanations are clearer for
declarative information, more efficient in many environments except
noisy seĴings, and more understandable because humans use languages
a lot in social interaction. Demonstration-based explanations are clearer
for procedural information, and could facilitate task completion and hu-
man understanding in parallel. For example, it is very hard to explain
how to tie a shoe in natural language, while it is rather easy to demon-
strate. Therefore, one future direction could be to investigate how to
switch between these two types of explanations to effectively leverage
both advantages.

From a psychology perspective, human process language-based ex-
planations through the auditory channel and process demonstration-
based explanations through the visual channel [Wuyts and Buekers,
1995]. Inspired from the dual processing in multimedia learning where
reading could help listening [Mousavi et al., 1995, Moreno and Mayer,
2002], another prominent future direction is to combine language with
demonstrations as a multi-modal explaining system.
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