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ABSTRACT

Robots have the potential to enhance human well-being by assisting with daily activities,
particularly for older adults and people with disabilities. One example is robot-assisted
dressing, where a robot helps a person put on clothing. However, no two individuals are alike.
Each person has unique preferences, behaviors, and needs, making personalization essential
for effective assistance. A central challenge is that robots often operate under uncertainty
about the human they are helping. This uncertainty may involve the person’s preferences,
hidden physical states, or reactions to assistance. If not properly addressed, such uncertainty
can lead to ineffective, undesired, or even unsafe outcomes.

This thesis asks: How should a robot behave when it is uncertain about the human? To
answer this, I present a unified framework for uncertainty-aware personalization in human-
robot interaction, spanning three core components of robot intelligence: preference learning,
state estimation, and motion planning. 1 propose methods that (1) reduce uncertainty using
implicit cognitive signals, (2) represent and respect uncertainty through set-based state
estimation, and (3) act under uncertainty using relaxed safety constraints.

First, I introduce an approach that uses response time, a subtle yet informative cognitive
signal, as implicit feedback for preference learning. While traditional methods rely solely on
binary choices, I developed the first algorithm that integrates both choices and response times
to infer not just what a person prefers, but how strongly they feel about those preferences.
Theoretical analysis reveals that response times significantly reduce uncertainty about user
preferences, especially when users have strong preferences. In simulation studies, this method
decreased misidentification of the most preferred option by up to 55 %, enabling faster and
more accurate personalization without extra user input.

Second, I address the problem of estimating hidden human states during physical inter-
action. For example, in dressing, parts of the body, such as the elbow, may be occluded. I
introduce the first set-based estimator that represents and respects uncertainty from human
behavior and sensing models trained on limited data. Instead of outputting a point estimate,
the method constructs a geometric set, such as a 3D box, guaranteed with high probability to
contain the true human state. In dressing experiments, the estimator achieved 92 % inclusion
using significantly smaller boxes than prior methods, balancing reliability and precision,
supporting safe and responsive physical assistance.

Third, I consider how a robot should plan motion when it is uncertain about future
human behavior. Traditional safety constraints typically prohibit any contact, which can



cause the robot to freeze when uncertainty is high. I propose a more flexible definition
of safety that allows either collision avoidance or low-impact contact. Integrated into a
learning-based control framework, this approach enables efficient motion while maintaining
safety. In dressing tasks, it reduced task time by 78 % without compromising safety.

Together, these contributions show how robots can reduce, represent and respect, and act
under uncertainty to personalize their assistance. This thesis lays a foundation for robots
that not only respond to commands, but also understand and adapt to the nuanced, evolving,
and uncertain nature of human behavior.

Thesis supervisor: Julie A. Shah
Title: Department Head, Department of Aeronautics and Astronautics
H.N. Slater Professor in Aeronautics and Astronautics
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This thesis focuses its real-world deployment on robot-assisted dressing |25,
26|, though its core contributions apply to broader human-robot interaction

In preference learning, the robot asks a user to compare two robot trajectories.
In addition to observing the user’s choice, this thesis incorporates the user’s
response time (how long they take to decide) as a signal of preference strength.
By modeling this implicit cognitive feedback, the robot can reduce uncertainty
about user preferences and accelerate learning [30]. . . . . .. ... ... ..
In robot-assisted dressing, parts of the human body (such as the elbow) may be
occluded from sensors. This thesis introduces a state estimation algorithm that
explicitly models uncertainty in both human motion and sensor observations.
By representing and respecting this uncertainty, the robot produces more
reliable estimates, which is critical for safe physical assistance [26]. . . . . . .
When assisting a person during dressing, the robot must plan safe motions
under uncertainty about human behavior. Traditional safety constraints often
prohibit any contact, leading to robot freezing [49]. This thesis proposes a
relaxed safety definition that allows either collision avoidance or low-impact
contact, enabling the robot to continue assisting effectively even under uncer-
tainty [25]. . . . .

(a) depicts the human decision-making process for a binary query =z € X,
where the human selects between two arms. The human first spends a fixed
non-decision time t,on40c €ncoding the query. Then, the human’s evidence
accumulates according to a Brownian motion with drift 276*. When the
evidence reaches the upper barrier a or lower barrier —a, the human makes a
choice, denoted by ¢, = 1 or ¢, = —1, respectively. The random stopping time
of the accumulation process is the decision time t,, and the total response
time iS trr 2 = tnondec + tz- (b) and (c) plot the expected choice Ec,] and the
expected decision time E[t,|, with shaded regions representing one standard
deviation, plotted as functions of the utility difference = '6* for two barrier
values a. . . . . .
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This figure illustrates key terms from our theoretical analyses, highlighting
the different contributions of choices and decision times to utility estimation.
These terms are functions of the utility difference 2 '6* and are plotted for two
barrier values, a. (a) compares the weights E [t,] and a® V [c,] in the asymptotic
variances for the choice-decision-time estimator (orange, theorem 4.2.1) and
the choice-only estimator (gray, theorem 4.2.2), respectively. This comparison
shows that decision times complement choices, particularly for queries with
strong preferences. (b) compares the weights in the non-asymptotic concentra-
tion bounds (theorems 4.2.3 and 4.2.4), showing similar trends, though these
weights may not be optimal due to proof techniques. . . . ... ... . ...
Three heatmaps show estimation error probabilities, Plarg max,.z 26 # 27],
for three GSE variations, shown as functions of the arm scaling factor cz
and barrier a. Darker colors indicate better estimation. (a) The choice-only
estimator §CH with the transductive design M., struggles as cz increases
(i.e., preferences become stronger), highlighting that choices from queries with
strong preferences provide limited information. (b) The weak-preference design
Aweak improves (a) by sampling queries with weak preferences but assumes
perfect knowledge of #* and equal resource consumption across queries. (c¢) The
choice-decision-time estimator §CH’DT with A¢rans Outperforms both choice-only
methods in (a) and (b), showing that decision times complement choices and
improve estimation, especially for strong preferences. . . . . . . . ... ...
This figure shows violin plots (with overlaid box plots) for datasets (a), (b),
and (c), showing the distribution of best-arm identification error probabilities,
P[Z # 2*], for all bandit instances across six GSE variations and two budgets.
The box plots follow the convention of the matplotlib Python package. For
each GSE variation and budget, the horizontal line in the middle of the box
represents the median of the error probabilities across all bandit instances.
Each error probability is averaged over 300 repeated simulations under different
random seeds. The box’s upper and lower borders represent the third and first
quartiles, respectively, with whiskers extending to the farthest points within

55

60

1.5x the interquartile range. Flier points indicate outliers beyond the whiskers. 62

In a robot-assisted dressing scenario, we deployed our set-based estimator,
GP-ZKF, to estimate the visually occluded human elbow position [276]. With
human dynamics and observation models learned via Gaussian Process re-
gression, GP-ZKF constructs zonotopic state estimates (illustrated with the
green box) based on the force measurements at the robot end effector. By
handling epistemic uncertainties in the learned models, GP-ZKF guarantees
probabilistic consistency, i.e., the true human elbow positions are contained
within the zonotopes across all time steps, with a high probability. . . . . . .
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5.2

5.3

5.4

6.1

A flowchart illustrating the three phases of the set-based estimator, GP-ZKF,
at time t = 1,...,T: (1) Prediction: Given the previous zonotopic estimate
P?t,l and control u;_; (omitted in the figure), GP-ZKF predicts a dynamics-
consistent zonotope X, using the learned dynamics model. The dynamics
contains a known function f(-), a learned function g(-), and a process noise
w (eq. (5.1)). (2) Measurement: Given a new sensor measurement y;, control
u; (omitted in the figure), and the predicted zonotope X;, GP-ZKF computes
a measurement-consistent polytope Tyt using the learned observation model.
The observation function contains a learned function A(-), and a measurement
noise v (eq. (5.2)). (3) Correction: The new state estimate X, is formed by
intersecting the prediction and measurement sets, i.e., X; N ?yt. ......
Zonotopic estimates along a trajectory produced by GP-ZKF under the Shift
None condition (see section 5.5.1). Each zonotopic estimate, X; (green fill),
always outer-approximates the intersection of the dynamics-consistent zono-
tope, X; (vellow fill), and the measurement-consistent polytope, X,, (blue
outline). Even when the point estimate (green dot), defined as the center of
.)/(\t, is inaccurate, the full zonotope still contains the true state (black dot),
demonstrating the consistency of GP-ZKF. While the size of X'; may increase
over time due to uncertainty propagation, the correction step with informative
measurements allows the estimate &; to shrink, improving precision. . . . . .
Keyframes of the robot-assisted dressing task (cloth omitted for clarity). The
simulated robot and human motions are reconstructed from real-world data
(fig. 5.1), as described in section 5.5.2. Each keyframe visualizes several ground-
truth human arm poses, along with their corresponding zonotopic estimates of
the elbow position. For visualization, each 3D zonotope produced by GP-ZKF
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82

is outer-approximated by an axis-aligned bounding box, shown as a green box. 84

During robot-assisted dressing, the robot must remain physically close to
the human arm to ensure human comfort due to the limited size of the
armhole. Robot motion planners optimizing for human safety, defined as
collision avoidance, might cause the robot to freeze under uncertainty, stalling
progress. This chapter redefines safety to allow either collision avoidance or
low-impact contact, enabling the robot to complete the task efficiently without
compromising safety. . . . . .. ... Lo
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6.2

6.3

Given two ellipsoids for human position and velocity, denoted by P and
v, respectively, the safety constraint, defined as collision avoidance or safe
impact is formulated in eq. (6.16). Given a fixed dimension i € {1,...,6},
this plot shows the constraint’s feasible region by treating the function values,
Cstoa(p®, €7") and Cstgp,; (v, "), as X- and Y- axis, respectively. All pairs
of (CstCA(pR,EpH), CstSLi(vR,SUH)> in the first quadrant indicate “collision
avoidance and not safe impact”. Here, note that “not safe impact” refers
to the situation of “unsafe impacts during (hypothetical) collisions,” which
is not in conflict with “collision avoidance.” All pairs in the union of the
first, third, and fourth quadrants indicate “collision avoidance or safe im-
pact,” which implies safety according to our definition. All and only unsafe
pairs are located within the second quadrant. We conservatively approxi-
mate the feasible region using the surrogate constraint: CstSLi(vR,gvH) <

max (0.01 Cstea (pf, EPH), 1000 Cstca (p™, SPH)>, whose feasible region is plot-

ted in gray. The corresponding equality is represented by the red line segments.
Integrating this surrogate constraint, for each dimension i € {1,...,6}, into
the trajectory optimization eq. (6.8) implies that the found trajectory ensures
human safety, defined as collision avoidance or safe impact. . . . ... ...
A comparison, in the form of robot trajectories and human ellipsoidal predic-
tions, of the feasible solutions found by CASI and CA in the 2D goal-reaching
domain. The red B represents the robot positions for ¢ € {2,3,4,5} along
the trajectory. Here, the robot positions for ¢ = 4 and 5 overlap due to the
trajectory optimization’s constraint eq. (6.8b). For ¢ € {2,3,4,5}, the human
position ellipsoids, £7 H, are plotted in different colors, whose centers are the
green M. The grey dots indicate the input human positions within the initial
dataset for GP training. CASI produced a more efficient path by allowing the
path to enter the human position ellipsoids, which CA does not allow. Thus,
defining safety as collision avoidance or safe impact provided more flexibility
than collision avoidance alone, allowing the planner to be less conservative
while still guaranteeing safety. . . . . . . . ... ... oL,
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6.4

6.5

6.6

(a) The robot models the human hand and robot end effector as point masses.
By assuming that the human shoulder position, pshoulder, i known to the robot
and static during the dressing process, the robot then approximates the human
arm by linearly interpolating between the hand position, p, and peouider. At
t = 0, the hand is observed directly by a sensor with the position p{’ (green
cross), and the human arm is illustrated as the orange rectangle. At time 1,

the robot first predicts the human hand position as an ellipsoid £} " (in dark
purple), which is constructed to bound the true hand position, pff. The robot
then duplicates this ellipsoid multiple times (in light purple) along the line

between the center of & " (green square) and the human shoulder position
(green disc). The duplicated ellipsoids are constructed to bound the true
human arm, assuming that the human arm does not bend during the dressing
process. To enable dressing, the robot adds an “armhole” constraint to the
trajectory optimization section 6.3.1, to ensure that the robot always stays
close to the human arm during the dressing process. For example, at time
t = 1, this constraint enforces that the distance d’f (black curly brackets)
between the robot position pff and the interpolated line connecting the centers
of the duplicated ellipsoid (black solid line) must be < d2Z . (b) Initial non-
interactive human dynamics data was collected by allowing the human to dress
themselves. . . . . . . .
The mean and standard error of #Iteration in the 2D goal-reaching domain.
The benchmark included running CASI (Qax = 0.6), CASI (Qpax = 0.3), and
CA, with 15 different simulated human behaviors (five environments and three
objective functions). CASI (Qpax = 0.6) achieved the highest efficiency, while
CA yielded the lowest. . . . . . . . . . ...
The trajectories of the robot end-effector positions, recorded during one execu-
tion of the assisted dressing task. Each subplot depicts trajectories along three
dimensions (z,y, z) produced by two algorithm variations, CASI (Quax = 1)
and CA; hence, each subplot includes six trajectories. (a) presents the case
of df = (0.08m, which means the robot end-effector had to remain within

max

0.08m of the human arm. (b) and (c) present the case of d22f = 0.085m and
0.09m, respectively. In both (a) and (b), CASI achieved much higher efficiency
than CA. In (¢), CASI and CA achieved a similar efficiency, though CASI was

slightly more efficient. . . . . . . . . . ... ... oL
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Al

A2

A3

A4

A violin plot overlaid with a box plot showing the best-arm identification
error probability, P [z # z*], as a function of budget for each GSE variation,
simulated using the food-risk dataset with choices (-1 or 1) [44], as described
in appendix A.3.2. The box plots follow the convention of the matplotlib
Python package. For each GSE variation and budget, the horizontal line in
the middle of the box represents the median of the error probabilities across
all bandit instances. Each error probability is averaged over 300 repeated
simulations under different random seeds. The box’s upper and lower borders
represent the third and first quartiles, respectively, with whiskers extending to
the farthest points within 1.5x the interquartile range. Flier points indicate
outliers beyond the whiskers. . . . . . . . . .. ... 0 L
Violin plots overlaid with box plots, used for tuning the elimination parameter
n in algorithm 1 for each GSE variation, simulated based on the snack dataset
with choices (yes or no) [45], as discussed in appendix A.3.3. Each plot shows
the best-arm identification error probability, P [Z # z*|, as a function of 7.
The box plots follow the convention of the matplotlib Python package. The
horizontal line in each box represents the median of the error probabilities
across all bandit instances and budgets. Each error probability is averaged over
50 repeated simulations under different random seeds. The top and bottom
borders of the box represent the third and first quartiles, respectively, while
the whiskers extend to the farthest points within 1.5x the interquartile range.
Flier points are the outliers past the end of the whiskers. . . . . . ... ...
A violin plot overlaid with a box plot showing the best-arm identification
error probability, P [z # z*|, as a function of budget for each GSE variation,
simulated using the snack dataset with choices (yes or no) [45], as described
in appendix A.3.3. The box plots follow the convention of the matplotlib
Python package. For each GSE variation and budget, the horizontal line in
the middle of the box represents the median of the error probabilities across
all bandit instances. Each error probability is averaged over 300 repeated
simulations under different random seeds. The box’s upper and lower borders
represent the third and first quartiles, respectively, with whiskers extending to
the farthest points within 1.5x the interquartile range. Flier points indicate
outliers beyond the whiskers. . . . . . . . .. ... ... oL
Violin plots overlaid with box plots, used for tuning the elimination parameter
n in algorithm 1 for each GSE variation, simulated based on the snack dataset
with choices (-1 or 1) [46], as discussed in appendix A.3.4. Each plot shows
the best-arm identification error probability, P [Z # z*|, as a function of 7.
The box plots follow the convention of the matplotlib Python package. The
horizontal line in each box represents the median of the error probabilities
across all bandit instances and budgets. Each error probability is averaged over
50 repeated simulations under different random seeds. The top and bottom
borders of the box represent the third and first quartiles, respectively, while
the whiskers extend to the farthest points within 1.5x the interquartile range.
Flier points are the outliers past the end of the whiskers. . . . . . ... . ..
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A.5 A violin plot overlaid with a box plot showing the best-arm identification
error probability, P [z # z*], as a function of budget for each GSE variation,
simulated using the snack dataset with choices (-1 or 1) [46], as described
in appendix A.3.4. The box plots follow the convention of the matplotlib
Python package. For each GSE variation and budget, the horizontal line in
the middle of the box represents the median of the error probabilities across
all bandit instances. Each error probability is averaged over 300 repeated
simulations under different random seeds. The box’s upper and lower borders
represent the third and first quartiles, respectively, with whiskers extending to
the farthest points within 1.5x the interquartile range. Flier points indicate
outliers beyond the whiskers. . . . . . . . . .. ... 0 L
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Chapter 1

Introduction

“One size does not fit all.”

—Proverb

Robots have the potential to enhance human well-being by assisting with daily activities.
This is especially critical as we face an aging global population and a growing number of
people living with disabilities. Providing accessible and personalized support is becoming a
major societal challenge. My research aims to build robots that adapt their assistance to
individual users in everyday life.

The global population aged 65 and older is rapidly increasing and will soon surpass the
number of children under 14 [2|. Simultaneously, one in six people live with significant
disabilities, making healthcare up to six times less accessible for them [3]. These challenges
are compounded by a projected shortage of 14.5 million healthcare workers worldwide [4].
Robots offer a promising solution to support older adults and people with disabilities in their
daily lives. Beyond elderly care and healthcare, robots can also assist the broader population
by automating household chores and routine tasks, freeing up time for more meaningful
activities [5].

Personalization is key. Each person has unique preferences and behaviors, shaped by
their comfort, physical capabilities, and interaction style. For a robot to provide meaningful
assistance, it must adapt to the specific needs of the individual. For example, in robot-assisted
dressing (fig. 1.1), one person may prefer the robot to move slowly to feel safe [6, 7|, while
another may prefer faster motion for efficiency. Some users may actively move their arm
to help guide the clothing, reflecting a high preference for autonomy [8-10], whereas others
may remain passive due to discomfort or limited mobility [11]. To deliver safe, comfortable,
and effective assistance, robots must personalize their behavior to align with these individual
differences [12].

Personalization is fundamentally challenging because robots rarely have a complete
understanding of the human they are assisting. Acting without this understanding can lead
to ineffective or even unsafe assistance. A central reason is that robots must operate under
uncertainty about the user’s preferences, behaviors, and needs, which stems from two key
sources. First, there is often a scarcity of data: when a robot is deployed with a new user, or
when a user’s condition changes, the robot may have very limited interaction history to draw
from [11]. Second, even when data is available, human behavior can be noisy or ambiguous.
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Figure 1.1: This thesis focuses its real-world deployment on robot-assisted dressing |25, 26],
though its core contributions apply to broader human-robot interaction tasks.

For example, if a person moves more actively during dressing, they might be signaling a desire
for greater autonomy, or they might simply be in a hurry. Without explicitly accounting for
such uncertainty, the robot may act on incorrect assumptions, leading to unsafe or ineffective
assistance [13].

Human-robot interaction research has developed many models of human preferences and
behaviors, along with adaptive algorithms applied in domains such as education [14], factory
assembly [15-17], autonomous driving [18|, and assistive tasks like handover [19], shared
autonomy [8, 9, 20|, exoskeletons [21], prostheses [22], dressing [10, 23], and feeding [12, 24].
However, most prior work does not explicitly quantify or manage the robot’s uncertainty
about its understanding of human preferences and behavior, which could limit the robot’s
ability to make reliable decisions when data is scarce or ambiguous.

To address this challenge, this thesis asks a fundamental question:

How should a robot behave when it is uncertain about the human?

Rather than avoiding uncertainty, I propose embracing it as a design principle for learning,
estimation, and planning. This thesis presents a unified framework that enables robots to
leverage uncertainty to offer personalized, safe, and effective assistance. Across three key
contributions:

1. When the robot is learning about human preferences, I develop an algorithm that
incorporates implicit cognitive signals like response time to reduce uncertainty about
preference strength, enabling more efficient personalization.

2. When the robot is estimating hidden human states, I develop an algorithm that explicitly
represents and respects uncertainty about human motion during interaction and how
that motion is perceived through the robot’s sensors, leading to more robust estimation.

3. When the robot is planning its motion to physically assist the human, I redefine safety
to allow low-impact contact. This relaxes the overly conservative constraint of avoiding
all contact, which can cause the robot to freeze under uncertainty. By permitting safe
contact, the robot is able to act safely under uncertainty about future human motion
and provide both safe and efficient assistance.

26



Figure 1.2: In preference learning, the robot asks a user to compare two robot trajectories.
In addition to observing the user’s choice, this thesis incorporates the user’s response time
(how long they take to decide) as a signal of preference strength. By modeling this implicit
cognitive feedback, the robot can reduce uncertainty about user preferences and accelerate
learning [30].

Each contribution focuses on a different aspect of robot decision-making, including learning,
estimation, and planning, and together form a foundation for reliable, uncertainty-aware
robot personalization. While robot-assisted dressing [10, 23, 25-29] is used as the primary
application, the ideas generalize to other collaborative human-robot tasks.

Below, I summarize each contribution in more detail.

1.1 Reducing Uncertainty Using Cognitive Feedback for
Fast Preference Learning

Understanding a person’s preferences, such as which clothes to wear or which robot trajectory
to follow, is fundamental to providing personalized assistance. A widely used approach asks
users to compare two options, e.g., different robot speeds or paths, and uses their choices to
infer preferences. This framework, illustrated in fig. 1.2, is common in robotics [31, 32] and
has also been applied in domains such as recommender systems [33-36] and large language
model alignment [37-41]. As discussed in the related work chapter (section 2.1.2), these
methods typically rely on binary choices, which provide limited information, especially about
how strongly the user prefers one option over another.

This thesis’s first contribution [30] proposes using cognitive feedback, specifically, the
human’s response time during comparisons, as an additional source of information. Psychology
research shows that response time reflects hesitation and preference strength [42]. The key
insight is that strong preferences often lead to faster decisions, while weak preferences result
in longer deliberation.

Building on the drift-diffusion model from psychology [42, 43], I developed a prefer-
ence learning algorithm that integrates both binary choices (explicit comparative feedback,
section 2.1.2) to identify a user’s preferred option and response times (implicit feedback,
section 2.2) to assess the strength of those preferences. Theoretical analysis shows that
incorporating response time reduces uncertainty in the estimated preferences and improves
learning efficiency, especially when the user has strong opinions. Empirical results in simulated
recommender systems show that this method reduces the misidentification rate of the most
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Figure 1.3: In robot-assisted dressing, parts of the human body (such as the elbow) may be
occluded from sensors. This thesis introduces a state estimation algorithm that explicitly
models uncertainty in both human motion and sensor observations. By representing and
respecting this uncertainty, the robot produces more reliable estimates, which is critical for
safe physical assistance [26].

preferred option by up to 55 % compared to choice-only baselines.

This work considers the simplified setting, where each comparative query presents a
pair of static options, such as visualized robot paths [31] or food items [44-46]. While this
abstraction sidesteps the complexity of physical robot execution, it captures the core challenge
of learning from limited binary feedback. Looking ahead, this work lays the foundation for
future extensions to robotics settings where each query involves dynamic, time-extended
trajectories, such as a dressing robot executing two motion strategies that the user experiences
and evaluates [32, 47, 48|. See section 7.2 for more.

Takeaway. Human feedback isn’t just about what people choose. How long they take to
choose reveals how strongly they feel. By leveraging this cognitive signal, robots can learn
preferences more efficiently under limited feedback.

This work is published in Li* et al. [30] and presented in detail in chapter 4.

1.2 Representing and Respecting Uncertainty for Robust
State Estimation

In physical assistance tasks, robots often need to estimate aspects of the human body that
are hidden or only partially observable. For example, during dressing, the person’s elbow is
frequently occluded by clothing. As shown in fig. 1.3, the robot must infer its position from
indirect sensor data, such as interaction forces, which is an essential step for planning safe
assistance.

Accurate estimation requires two components: a dynamics model describing how the
human arm moves during interaction, and an observation model capturing how that motion
is perceived through the robot’s sensors. These models are often trained from data, as human
behavior can vary widely across individuals due to differences in autonomy preference, motor
ability, or rehabilitation status. But when training data is scarce or noisy, the resulting
models may be inaccurate, leading to errors in estimating the human state, and potentially
causing discomfort or harm.
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Figure 1.4: When assisting a person during dressing, the robot must plan safe motions under
uncertainty about human behavior. Traditional safety constraints often prohibit any contact,
leading to robot freezing [49]. This thesis proposes a relaxed safety definition that allows
either collision avoidance or low-impact contact, enabling the robot to continue assisting
effectively even under uncertainty [25].

To ensure safety under these conditions, this thesis proposes a set-based estimation
algorithm that explicitly models and respects the robot’s uncertainty about the learned
dynamics and observation models. The method builds on techniques from control theory,
which represent uncertainty using geometric bounds. Specifically, the robot maintains a
bounding box (see green box in fig. 1.3) that is guaranteed to contain the true elbow position,
even when models are imperfect. Unlike prior approaches that rely on hand-crafted models,
this method learns from data and adjusts the size of the bounding box dynamically, based on
the calibrated uncertainty.

Empirical results from robot-assisted dressing show that this method produces tight and
reliable estimates: the resulting ~9cm x 9cm X 9cm boxes contained the true elbow position
92 % of the time. In comparison, baseline methods either produced boxes that contained the
elbow only 68 % of the time, or up to 81 % of the time, but required much larger boxes of
~18cm x 15cm x 19cm. These results demonstrate that explicitly accounting for uncertainty
in both human behavior and robot sensing leads to more reliable estimation, enabling robots
to act safely even when human states are only partially known.

Takeaway. When the human state is hidden or uncertain, the robot must estimate
conservatively, by explicitly modeling what it does not know, to ensure safety in physical
interaction.

This work is published in Li* et al. [26] and presented in detail in chapter 5.

1.3 Acting under Uncertainty by Allowing Contact for
Safe and Efficient Planning

Planning robot motion in close proximity to the human body requires safety guarantees.
Traditionally, safety is defined as strict collision avoidance [50|, which prohibits any physical
contact between the robot and the human. However, when the robot is uncertain about how
the human might move, due to scarce noisy data, this constraint can cause the robot to freeze,
waiting to reduce uncertainty before acting [49]. This is especially problematic in physically
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assistive settings like dressing, as shown in fig. 1.4, where the robot must move garments
around the human arm through tight spaces, and some level of contact is often inevitable.

To address this challenge, this thesis’s third contribution [25] proposes a more flexible
safety definition: the robot is safe if it either avoids contact or ensures that any contact has
low physical impact [51]. This two-pronged safety constraint allows robots to move even
when the future human motion is uncertain, as long as any resulting contact remains within
a safe threshold.

I implement this safety constraint within a learning-based model predictive control
framework [52]. The robot learns a model of human motion from online data and calibrates
its uncertainty about that model. It then predicts all plausible future human motions and
optimizes its own actions to remain within the safety constraint.

Empirical results from a robot-assisted dressing study showed that the proposed two-
pronged safety constraint enabled the robot to complete the task efficiently, even with limited
data about human arm motion. In contrast, a strict collision-avoidance constraint caused the
robot to frequently freeze, waiting to collect more human data and reduce uncertainty before
acting. With the two-pronged safety constraint, the robot completed the task in 25 seconds,
achieving a 78 % reduction in task time, while maintaining safety. These results demonstrate
that when human motion is uncertain, allowing low-impact contact enables robots to assist
more efficiently without compromising safety.

Takeaway. Safety does not have to mean inaction. By allowing safe contact, robots can
remain effective even when uncertain about how the human will move.

This work is published in Li et al. [25] and presented in detail in chapter 6.

Together, these contributions provide a coherent approach to uncertainty-aware person-
alization. Rather than ignoring what robots do not know, this thesis shows how to reduce
uncertainty through richer human feedback, respect uncertainty in estimation, and act under
uncertainty during physical assistance. These capabilities enable safer interaction, faster
learning, and more human-aligned assistance.

The rest of this thesis builds on this central idea. Chapter 2 reviews prior personalization
approaches in human-robot interaction and highlights their limitations in managing uncer-
tainty. Chapter 3 introduces the technical foundations. Chapters 4 to 6 present the three
key contributions in detail. Finally, Chapter 7 reflects on the implications of this work and
outlines directions for future research.
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Chapter 2
Related Work

“If I have seen further, it is by standing on the shoulders of giants.”

—TIsaac Newton

Robots that assist people must adapt to each user’s unique preferences and behaviors.
This process of personalization is central to making robot assistance safe and effective in
real-world settings. To personalize their behavior, robots must learn about humans, either by
gathering human feedback directly or by observing how humans interact with the system.

The literature on personalized robotics can be broadly categorized based on the source of
human feedback:

o Explicit feedback, such as user-provided ratings [53], comparisons [31], and demonstra-
tions [54], is deliberately communicated to the robot.

e Implicit feedback, such as human motion [55, 56] and eye movements [57|, is passively
observed and interpreted as a reflection of human intent.

e Transfer learning approaches aim to leverage data from previous users to quickly
personalize to a new user.

This chapter reviews key work across these three areas. Section 2.1 surveys personalization
methods based on explicit human feedback. Section 2.2 discusses how robots use implicit
cues to infer user preferences, with an emphasis on modeling uncertainty. Section 2.3 reviews
learning-to-personalize approaches across multiple users. Each section concludes by identifying
key limitations that motivate this thesis’s contributions.

2.1 Personalization with Explicit Human Feedback

Explicit human feedback refers to information that users deliberately provide to guide the
robot’s behavior, such as numerical evaluations [53], comparisons [31], or demonstrations [54].
This type of feedback is often more informative than passive implicit human feedback, as
it directly reflects the user’s preferences. However, it can also be cognitively demanding to
provide, especially in real-time or interactive settings.
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Researchers have developed many algorithms to interpret and optimize robot behavior
based on different forms of explicit feedback. This section reviews three major categories of
explicit feedback: (1) evaluative feedback, (2) comparative feedback, and (3) demonstrative
and corrective feedback. We also highlight how prior work typically relies on a single feedback
modality, without leveraging additional implicit signals that may accompany explicit feedback.
This gap motivates the first contribution of this thesis: combining binary comparisons with
response times to reduce uncertainty and improve preference learning efficiency.

2.1.1 Evaluative Feedback

A common form of explicit feedback is a numerical score indicating how desirable a robot
action or trajectory is [58|. This evaluative feedback allows users to directly shape the robot’s
behavior based on their preferences.

A well-known framework in this category is TAMER (Training an Agent Manually via
Evaluative Reinforcement), which enables robots to learn from real-time human-provided
scalar rewards [53|. Variants of TAMER interpret feedback as reward functions or Q-values [53,
59-63], or advantage functions [64].

Instead of scoring individual actions, some systems ask users to rate entire trajectories [20],
a strategy that reduces cognitive load but sacrifices granularity. These ratings have been
used in both empirical studies [20] and theoretical analyses [65, 66].

However, subjective ratings can be inconsistent and biased. For instance, users may
unintentionally create positive feedback loops, reinforcing suboptimal behaviors [64]. The
feedback is also often sparse, since providing real-time ratings can interrupt the task at hand.

2.1.2 Comparative Feedback

In many tasks, it is difficult for users to provide absolute ratings or specify desired actions.
Instead, it can be more natural for users to express their preferences by comparing options.
This form of comparative feedback is cognitively lighter and more reliable than evaluative
feedback [32].

A large body of work has explored reward learning from pairwise comparisons. In these
settings, the robot presents two or more trajectory options and asks the user which one
they prefer. These preferences are then used to learn a reward function or preference model.
For example, Christiano et al. [67] proposed a deep learning framework that learns from
trajectory comparisons, and Sadigh et al. [31] developed an active learning algorithm that
selects informative comparisons to efficiently infer reward functions.

Subsequent work has expanded pairwise-comparison-based reward learning in many direc-
tions. Some methods improve query efficiency, for example, by generating batch queries [68],
comparing more than two options at a time [69], or avoiding queries that are too obvious
to be informative [70]. Others extend pairwise-comparison-based learning to handle more
complex reward structures, including nonstationary [71], nonlinear 72|, or multimodal reward
functions [73|. Several approaches incorporate richer forms of explicit feedback, such as
numerical ratings [74], corrective actions |75|, or feature-level queries [76].

Pairwise-comparison-based learning has also been combined with off-policy reinforcement
learning and unsupervised pretraining [77|, as well as meta-learning for few-shot general-
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ization [78|. Additionally, pairwise-comparison-based learning has also been extended to
ranking-based learning. Brown et al. [79] proposed a method that learns from a batch of
ranked trajectories, which was later extended to automatically generate rankings [80, 81|,
scale to high-dimensional tasks [82], and integrate with offline reinforcement learning [83].
Finally, pairwise-comparison-based reinforcement learning has received increasing theoret-
ical attention, with recent work developing sample-efficient algorithms for learning from
comparisons [84-87].

In robot personalization, comparative feedback has been used in various applications.
For instance, Akbarzadeh, Lobarinas, and Kehtarnavaz [88]| used pairwise comparisons to
personalize hearing aid parameters. In exoskeleton control, Tucker et al. [32] developed a
Bayesian optimization algorithm that learns user preferences from comparisons, and extended
it to higher-dimensional settings [47] and dynamic locomotion tasks [48]. Further developments
incorporated safety constraints [89-91].

2.1.3 Demonstrative and Corrective Feedback

Demonstrations and physical corrections offer a rich form of explicit feedback. Instead of
rating or comparing options, users directly teach the robot by showing desired behaviors
through example trajectories, labeled actions, or real-time physical guidance.

These feedback modes are central to imitation learning, learning from demonstration,
and apprenticeship learning [54]. In offline settings, users provide demonstrations of expert
behavior, which the robot imitates using supervised learning or inverse reinforcement learning
(IRL) [92-94|. In interactive settings, users may label correct actions at visited states [95] or
intervene in real time to correct behavior through physical input [96-107].

In robot personalization, such feedback has been used to adapt robot behavior to individual
users. For example, in robot-assisted dressing, Gao, Chang, and Demiris [27| proposed a
system that adapts its trajectory based on physical corrections from the user; this was
later extended to preserve natural posture [108]. Gopinath, Jain, and Argall [8] used verbal
feedback to optimize shared-control parameters. Demonstrations have also been used to
guide policy optimization. Cakmak et al. [109] collected examples of good and bad policies
in simulation, enabling the robot to find solutions closer to the good examples and farther
from the bad ones. Batzianoulis et al. [110] learned human reward functions from suboptimal
trajectories, using signals from brain-computer interfaces to evaluate performance.

While demonstrations and corrections can be highly informative, they impose significant
user burden. Demonstrations require task expertise and motor control, while physical
corrections demand sustained attention and engagement. As such, these forms of feedback
may not be practical in high-load or assistive settings, where users have limited bandwidth
or physical capacity.

2.1.4 Summary

Across a wide range of applications, explicit human feedback has proven effective for person-
alizing robot behavior. Each type of feedback comes with trade-offs:
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e Fvaluative feedback (section 2.1.1) is informative, but often not reliable [32], and suffers
from issues, e.g., positive reward cycles [64].

e Comparative feedback (section 2.1.2) is more robust and intuitive but requires generating
and evaluating multiple behaviors.

e Demonstrative and corrective feedback (section 2.1.3) provides rich information but
demands high user effort and expertise [58|.

Most prior work treats these feedback signals independently and aims to extract as much
information as possible from each explicit response. However, they often overlook implicit
behavioral signals that naturally accompany explicit feedback, such as response times and
hesitation. These signals can reveal how confident or strongly the user feels about their
choices, providing information that is otherwise lost when using only the binary or numeric
label.

This thesis’s first key contribution, introduced in chapter 4, proposes to integrate human
response time (an implicit signal) with binary comparisons (an explicit signal) to more
efficiently reduce uncertainty and learn user preferences. By combining these two modal-
ities through a cognitively grounded decision-making model, the robot can extract richer
information from each query without requiring additional effort from the user.

2.2 Personalization with Implicit Human Feedback

Unlike explicit feedback, which is deliberately communicated by the user, implicit feedback
arises passively during interaction. Human behaviors, such as motion, gaze, timing, and
physiological signals, often reflect internal preferences, intentions, or discomfort, even if they
are not consciously conveyed. By interpreting these signals, robots can personalize assistance
without increasing the user’s cognitive or physical workload.

Broadly, prior work on learning from implicit feedback falls into three categories:

e Objective metric-based personalization, which treats human behavior or physiology (e.g.,
metabolic cost and keystroke patterns) as implicit indicators of task quality or user
preference, and optimizes robot assistance to improve these metrics.

e Black-box behavioral model-based personalization [13], which learns mappings from past
interactions to future human behavior, and uses these models to predict human motion
and adapt robot planning accordingly.

e Theory-of-Mind model-based personalization [13], which assumes that humans act
approximately rationally to optimize latent reward functions, and uses these models to
infer those reward functions and plan robot behavior accordingly.

This section reviews each approach and examines its role in robot personalization. A
common limitation across these methods is the lack of uncertainty quantification: most do not
explicitly represent the robot’s uncertainty about the learned human model, i.e., how human
intentions and preferences relate to observed implicit feedback. As a result, these systems can
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be fragile when data is scarce, ambiguous, or noisy. In contrast, this thesis’s second and third
contributions develop algorithms that explicitly represent, respect, and act under uncertainty,
enabling safer and more effective personalization in real-world human-robot interaction.

2.2.1 Objective Metric-Based Personalization

One approach to learning from implicit feedback is to treat measurable human behavior or
physiology as an objective signal reflecting task success, user comfort, or preference. These
metrics are not explicitly provided by the user, but arise naturally during interaction and
can be passively monitored, making them particularly valuable in assistive settings where
user effort must be minimized.

In physical assistance, researchers have used physiological signals to guide personalization.
For example, Slade et al. [111] measured metabolic cost using respirometry equipment to
personalize exoskeleton parameters for more efficient walking. Behavioral metrics such as
keystroke patterns (e.g., backspace frequency) have been used to infer typing difficulty and
personalize assistive typing systems [112]. In physical activity coaching, Hochberg et al. [113]
used the number of active minutes per day to optimize robot behavior and encourage exercise.
Similarly, other works use signals from body-worn sensors to evaluate how effective a robot’s
assistance is [21, 114-117].

Objective feedback is also widely used in intelligent tutoring systems, where student
performance, particularly answer correctness, serves as a clear and interpretable signal of
learning progress [118]. Many works in this domain model personalization as a sequential
decision-making problem, using frameworks such as multi-armed bandits [118-124], contextual
bandits [125], or reinforcement learning [126-128| to optimize teaching strategies based on
observed student behavior. These systems adaptively select content or feedback that best
supports each learner’s needs, based on their ongoing implicit performance signals.

Objective evaluative feedback is often more reliable than subjective ratings, particularly
in domains with clear performance metrics or access to physiological signals from wearable
sensors. However, such feedback is typically limited to specific applications and may not
capture the full spectrum of user preferences, for example, low metabolic cost does not
necessarily indicate comfort or a sense of autonomy. Moreover, these approaches often
assume that the observed metrics are clean and directly reflect user intent, overlooking the
uncertainty in how external behavior maps to internal goals or preferences. In contrast, this
thesis develops estimation and control algorithms that explicitly model and respond to this
uncertainty, enabling more robust, adaptive, and user-aligned robot assistance.

2.2.2 Black-box Behavioral Model-Based Personalization

Black-box human models aim to predict human behavior directly from interaction history,
without assuming a specific cognitive structure. These models are typically trained on
datasets of human behavior and deployed within learning or control pipelines to adapt robot
assistance accordingly.

The black-box approach offers modeling flexibility and has been widely adopted in real-
world human-robot collaboration scenarios. However, because these models often do not
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represent uncertainty, they can produce unreliable predictions when human behavior deviates
from the training data due to noisy measurements and distribution shifts.
Black-box models come in several forms, which we review below:

e Markovian policies, where human actions depend only on the current state or short
interaction history.

e Hierarchical policies, which include both high-level modes (e.g., intentions) and low-level
motion policies.

e Trajectory models, which learn structured models of full human trajectories.

e Hierarchical trajectory models, which incorporate latent high-level modes within trajec-
tory modeling frameworks.

In what follows, we review representative examples of each model class, highlight their
strengths and limitations, and discuss how they relate to this thesis.

Markovian Policy

One of the simplest forms of black-box human modeling assumes that the human follows a
Markovian policy: that is, their next action depends only on the current state or a short
history of past interactions. These policies are typically learned directly from data and
integrated into robot planning pipelines.

For example, Nikolaidis et al. [129] proposed a cross-training framework where a robot
learns a Markovian human policy during interaction and uses it to improve coordination in
shared tasks. Chen et al. [130] incorporated human trust dynamics into a Markovian policy
and proposed to plan robot trajectories under partial observability of trust. Other works
model human behavior as Markovian policies and deploy online model-free reinforcement
learning [14, 131-140], offline model-free reinforcement learning [138, 141|, and PD control
design [142], to personalize robot assistance.

While these methods enable personalization, they generally do not explicitly represent
uncertainty about the human model. As a result, when data is scarce or noisy, human
predictions can be unreliable, leading to undesirable or unsafe robot behavior. In contrast,
this thesis emphasizes the importance of uncertainty-aware estimation and planning: explicitly
modeling the robot’s uncertainty about human behavior improves robustness and safety in
real-time interaction.

A related line of research focuses on tracking reference trajectories generated by humans.
In many physical human-robot interaction tasks, such as rehabilitation or dressing, the human
limb moves along a trajectory that the robot must follow, despite not knowing the trajectory
in advance. To address this, several works [143-149| model the human as an impedance
controller with unknown stiffness, damping, and reference trajectory. The robot then learns
to track this latent trajectory using adaptive control, with formal guarantees on tracking
error stability. Similar approaches have been applied to robotic knee prostheses, where the
goal is to imitate natural human gait or track the motion of the intact limb using adaptive
controllers [150, 151].
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Like this thesis, these methods handle uncertainty by ensuring stability in the presence
of unknown parameters. However, they are primarily designed for tasks where the robot
is expected to track a human-generated trajectory. In contrast, this thesis considers more
general and flexible human-robot interactive tasks, where the robot may need to estimate
latent human states, reason about uncertainty in human states and behavior, and compute
actions that completes interactive tasks while ensuring human safety. These broader settings
are addressed through the optimal control formulations introduced in this thesis’s second
and third key contributions (chapters 5 and 6).

Hierarchical Policy

Hierarchical policies provide a richer representation of human behavior by decomposing it
into high-level modes (e.g., intentions, subgoals) and low-level motion policies. This structure
captures the intuition that humans operate at multiple levels of abstraction: for instance,
a person may decide to reach for a cup (high-level intention) and then execute a reaching
motion (low-level behavior). These models are particularly useful for capturing complex or
multimodal behaviors.

Early work often assumed that the set of high-level human modes was known in advance.
For example, Nikolaidis, Hsu, and Srinivasa [152] modeled humans as switching between
predefined modes, such as adaptive or stubborn, and used a bounded-memory probabilistic
automaton to capture transitions between these modes based on recent interaction history.
These modes were combined with low-level Markovian motion policies and used for real-time
inference and planning. This framework was later extended to shared autonomy [153] and
verbal communication scenarios [154].

Park, Park, and Manocha [155] proposed a hierarchical human policy in which both high-
level mode transitions and low-level motion trajectories were learned offline via supervised
learning. At runtime, the robot performs online Bayesian inference to estimate the current
mode, predict future human behavior, and plan accordingly to ensure safety. Similarly, a
line of works [57, 156-158| modeled humans using a high-level static latent intent variable
alongside low-level Markovian policies, and applied online inference to adapt robot behavior
based on the inferred intent. Other approaches [159, 160] jointly learn human mode transitions
and motion policies by combining offline reinforcement learning with latent representation
learning, enabling personalized robot policies under partially observed human modes.

Later research moved toward learning high-level modes directly from data, rather than
specifying them a priori. For example, Unhelkar and Shah [161] formalized human behavior as
a hierarchical probabilistic graphical model, with both mode transitions and motion policies
modeled as Markovian. They applied Bayesian nonparametrics for parameter estimation
and integrated this model into a partially observable Markov decision process framework for
decision-making, both with [56] and without [55] verbal communication. Gopinath, Javaremi,
and Argall [162] proposed a probabilistic model to capture the gap between the measured and
human-intended physical actions in shared autonomy, using supervised learning to estimate
parameters and correcting robot commands accordingly.

More recent approaches integrate learning latent high-level modes into end-to-end rein-
forcement learning. Xie et al. [163| developed an online multi-agent reinforcement learning
algorithm that learns a human-mode encoder from interaction history and jointly trains the
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robot’s policy conditioned on this latent state. This work was later extended to actively
stabilize the human’s behavior [164] and to account for nonstationary human policies during
long-term interaction [165].

These hierarchical models offer expressive representations of human behavior and can
capture long-term structure in interaction. However, like simpler black-box policies, they
typically do not quantify epistemic uncertainty in the learned models. When trained on limited
or biased data, the mode transitions or motion predictions may be unreliable, potentially
leading to undesirable or unsafe robot behavior. This thesis takes a complementary perspective:
rather than relying solely on accurate prediction, it explicitly represents uncertainty in human
state estimation and robot planning. By reasoning about what the robot does not know,
the system can make more conservative estimates and avoid overconfident decisions under
uncertainty.

Trajectory Model

Trajectory models represent human behavior as complete motion trajectories, rather than
state-action mappings. Unlike Markovian policies that model human decisions step-by-step,
trajectory models capture the temporal structure of entire motion sequences and are often
trained to match expert demonstrations or interaction patterns.

A well-known example is Interaction Primitives [166], which use Dynamic Movement
Primitives to represent human-robot joint trajectories. Given partial observations of an
ongoing trajectory, the system infers the phase of the interaction and predicts future human
motion. This approach was later extended with probabilistic movement primitives [167],
Bayesian filtering [168], and multi-modal sensor fusion [169].

Trajectory models are especially useful for predicting motion in structured tasks such
as collaborative assembly or handover, where typical trajectories are smooth, repeatable,
and easily aligned. However, most trajectory models rely on supervised learning and do
not explicitly account for uncertainty in prediction. When test-time trajectories deviate
from training data due to novel user behavior, occlusions, or sensor noise, the models may
extrapolate poorly. Moreover, they offer limited interpretability and do not typically model
human preferences or intent. In contrast, this thesis adopts a reinforcement learning and
control-theoretic perspective where human motion is estimated at each time step, with
uncertainty explicitly modeled and propagated. By using uncertainty as a core design
principle, the proposed methods offer robustness in settings with limited training data and
ambiguous sensory input.

Hierarchical Trajectory Model

Hierarchical trajectory models extend trajectory-based approaches by incorporating latent
high-level modes, such as user intent or task phase, into the trajectory generation process.
These models aim to jointly capture the structure of motion over time and the higher-level
decision patterns that influence it. As such, they are particularly useful for modeling human
behavior in complex, multimodal, or context-dependent tasks.

Early approaches assume the high-level modes are predefined. For example, Koppula
and Saxena [170] introduced Anticipatory Temporal Conditional Random Fields, which
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model human trajectories in terms of latent object affordances and task goals. Mainprice
and Berenson [171] used a Gaussian mixture model to represent possible trajectories under
different modes, and inferred the human’s current mode by matching observed motion. These
models were extended for real-time inference [172] and for combining multiple prediction
strategies [173].

Other work learns the high-level structure directly from data. Schmerling et al. [174] used
conditional variational autoencoders to learn distributions over future human trajectories
conditioned on past motion and static human response modes. This method was later extended
to multi-agent trajectory forecasting [175, 176| and incorporated into control systems with
safety assurance [177].

These models offer strong predictive performance in structured environments and can
capture multimodal distributions over future motion. However, they typically operate as
black boxes and do not represent uncertainty in the learned structure. This limits robustness
when behavior falls outside the training distribution or when user intent is ambiguous. In
contrast, this thesis emphasizes explicitly modeling the robot’s uncertainty about human
motion, particularly in physically assistive tasks where human movement may be occluded or
human data is scarce. By maintaining uncertainty-aware estimates and designing controllers
that can safely act under this uncertainty, the proposed methods extend beyond purely
predictive models to support reliable real-time interaction.

2.2.3 Theory-of-Mind Model-Based Personalization

Theory-of-Mind models incorporate structure from cognitive science and behavioral economics
to model humans as approximately rational agents. Instead of directly predicting behavior
from data, these models assume that human actions arise from optimizing a latent reward
function, which captures the user’s goals, preferences, or intentions. The robot then infers
this hidden reward function by observing the human’s behavior.

This framework provides a principled way to interpret human actions and enables the robot
to generalize beyond previously observed behavior. Theory-of-Mind models are especially
useful in settings where humans act strategically, adapt over time, or interact with the robot
as a partner rather than a passive system.

A common pipeline for Theory-of-Mind model-based personalization involves three steps:
first, the human policy is modeled as the result of optimizing an unknown reward function;
second, this reward function is inferred using inverse reinforcement learning (IRL); and third,
the learned model is used for robot planning, either to assist the human or to interact with
them strategically.

Theory-of-Mind-based personalization methods vary in their assumptions about human
rationality and structure. In the next subsections, we review three key classes:

e Rational models, which assume that humans are optimal in decision-making.

e Boltzmann noisily rational models, which assume that humans are bounded-rational in
decision-making.

e Hierarchical Theory-of-Mind models, which introduce additional latent structure, such
as roles, intents, or reasoning levels.
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While Theory-of-Mind models offer interpretability and generalization, many prior works
do not quantify the robot’s uncertainty about the learned human reward functions. As a result,
robots may act with uncalibrated confidence, leading to undesirable or unsafe assistance. This
thesis addresses this gap by explicitly modeling uncertainty during estimation and control,
enabling safer and more adaptive behavior in physically assistive tasks.

Rational Model

A foundational Theory-of-Mind assumption is that humans act rationally: they choose actions
that optimize an internal reward function, given their knowledge of the environment. Under
this view, personalization becomes a problem of inferring the user’s reward function from
observed behavior and adapting the robot’s actions accordingly.

This idea underlies a wide range of inverse reinforcement learning (IRL) approaches. For
instance, in assistive shared autonomy, Dragan and Srinivasa [178] proposed estimating the
human’s goal based on real-time joystick inputs and blending robot assistance with user
control. In autonomous driving, Sadigh et al. [179] modeled other drivers as rational agents
optimizing unknown reward functions, and used this model to generate robot behavior that
anticipates and influences human responses.

While assuming perfect rationality simplifies modeling, it often fails to capture real-world
human behavior, which could be biased. To address this, later works introduce bounded-
rational alternatives, which will be reviewed in the next section.

Some efforts have explored online reward learning in continuous control settings. For
example, Li et al. [180] modeled human-robot collaboration as a linear-quadratic team game,
where both agents optimize a common quadratic cost function. Their algorithm simultaneously
learns this cost from human movements while computing optimal robot actions. A follow-up
work [181] proposed a more scalable actor-critic variant. These methods incorporate the
robot’s uncertainty about the human’s cost functions implicitly by ensuring the stability of
the learning process.

While these works support personalization through reward inference, they are typically
limited to trajectory tracking tasks and often assume full observability of the human state. In
contrast, this thesis addresses real-time physical assistance scenarios, such as robot-assisted
dressing, where the robot must not only generate its own motion plans but also estimate
hidden human states from scarce and noisy data. In such settings, effective assistance requires
the robot to estimate, plan, and act cautiously under uncertainty. To address this, the second
and third contributions of this thesis explicitly model and reason under uncertainty about
human behavior, improving both safety and efficiency.

Boltzmann Noisily Rational Model

The Boltzmann noisily rational model relaxes the assumption of perfect human rationality
by introducing stochasticity in decision-making. Rather than always choosing the optimal
action, humans are modeled as selecting actions probabilistically, with higher-probability
actions yielding higher expected reward. This captures bounded rationality and variability in
human behavior.
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Formally, the human policy is modeled as a Boltzmann distribution over actions:

mr(a | s;0) ocexp (BQu(s,a))  [182, eq. (3)],

where Qp (s, a) is the expected value of taking action a in state s. And [ is the rationality
coefficient, where higher values imply more deterministic, goal-directed behavior.

This model has been used in a range of human-robot interaction tasks. For example,
Fridovich-Keil et al. [182] assumed a known reward function (see Fridovich-Keil et al. [182,
section 3.3]) and used Bayesian inference to learn the human’s rationality coefficient online.
The robot then planned its actions using a confidence-aware motion prediction framework.
While this work captures uncertainty about rationality, it assumes the human’s reward
function is known.

Other works extend the model further. Tian et al. [183] incorporated human learning
dynamics, where the human updates their internal model of the environment over time. This
allows the robot to reason about nonstationary and multimodal human behavior. However,
it does not model the robot’s uncertainty about these learned components, which may lead
to overconfident behavior when the training data is limited or mismatched at test time.

More closely aligned with this thesis, Hu, Nakamura, and Fisac [184] introduced latent
intent parameters into the human reward function and used Bayesian inference to estimate
both intent and rationality. This allowed the robot to plan conservatively under uncertainty,
ensuring safety during interaction. Hu and Fisac [185] generalized the model further by
expressing human behavior as an unknown linear combination of known Boltzmann policies,
enabling robots to adapt to richer behavioral patterns.

While these works address uncertainty in the human reward model and emphasize safe
planning, they assume full observability of the human state. In contrast, this thesis focuses
on physical assistance tasks where human motion is only partially observable, such as during
dressing, where key body parts may be occluded. This thesis’s second contribution addresses
this challenge through robust estimation of hidden human states under uncertainty. Building
on this, the third contribution introduces a relaxed human safety constraint that allows
either collision avoidance or low-impact contact, enabling the robot to act effectively even
under uncertainty. Together, these contributions complement prior work by addressing both
estimation and planning challenges in physically assistive settings where human behavior is
uncertain and partially observed.

Hierarchical Theory-of-Mind Models

Hierarchical Theory-of-Mind models extend basic rationality frameworks by introducing
structured latent variables, such as roles, goals, modes, or reasoning levels, that influence
human behavior. These models aim to better capture the diversity, ambiguity, and strategic
depth of human decision-making in interaction with robots.

One common approach is to assume that each human belongs to a discrete “type” or follows
a particular strategy. For example, Nikolaidis et al. [186] clustered demonstrations from
different users into behavioral types and learned a separate reward function for each. During
interaction, the robot inferred the user’s type online and adapted its behavior accordingly.

Other hierarchical models embed latent structure directly into the reward function.
Schwarting et al. [18] introduced the concept of social value orientation (SVO), modeling
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humans as optimizing a weighted combination of their own reward and the robot’s reward.
The robot maintained a belief over these weights to plan socially compliant driving behavior.
SVO has since been extended to competitive multi-agent interactions [187].

Goal-conditioned latent structure is also common. Le et al. [188] used a hierarchical
approach in which high-level rewards were learned via IRL and low-level motion was modeled
by a goal-conditioned recurrent policy. Wang et al. [189] similarly trained goal-conditioned
human motion policies offline, then inferred human goals online via IRL to guide robot
decision-making.

A separate line of work augments Boltzmann-rational models with latent modes. For
instance, Tian et al. [190] modeled human role switching between leader and follower modes,
using online reinforcement learning to infer both the human’s rationality and current role
while planning safe robot actions.

More sophisticated hierarchical reasoning frameworks, such as level-k and cognitive
hierarchy models from behavioral economics, have also been adapted to robotics. These
models assume that humans perform limited iterations of strategic reasoning: for example,
a level-1 user’s best response to a level-0 partner [191]. Such models have been used in
autonomous driving settings [192-195|, where robots learn to infer the human’s reasoning
level and rationality while ensuring safety during interaction.

ToM-based personalization enables robots to interact with strategic or nonstationary
humans. This is particularly relevant in cooperative tasks with asymmetric information,
where either the human learns from the robot [183, 196-199], the robot learns from the
human [200, 201], or both learn simultaneously [202]. Other applications include competitive
multi-agent games [203] and strategic driving scenarios such as intersections and merges |18,
179, 184, 195, 204, 205].

While these hierarchical models offer strong representational power, they often assume
that the structure or latent parameters (e.g., goals, roles;, SVO weights) are either known or
can be inferred with confidence. In practice, incorrect assumptions or scarce human data can
lead to misidentification of modes or strategies, resulting in unsafe or ineffective behavior.

This thesis takes a complementary approach. Rather than leveraging strong structural
assumptions about human reasoning, it focuses on uncertainty-aware estimation and control.
By explicitly modeling the robot’s uncertainty over hidden human states and planning
conservatively under that uncertainty, the proposed methods enable robust assistance even
when human behavior is uncertain and partially observed.

2.3 Personalization with Transfer Learning

While most personalization methods require robots to learn from scratch for each user,
transfer learning aims to accelerate this process by leveraging data from prior users. These
approaches seek to extract patterns or representations that generalize across individuals,
enabling faster adaptation with less interaction data.

For example, OhnBar, Kitani, and Asakawa [206] proposed a transfer learning framework
that first learns history-dependent black-box models from multiple users and transfers them
to personalize to a new user. Rudovic et al. [207] used facial and body movement data from
multiple children with autism to train a supervised model that predicts affective states during
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robot-assisted therapy, using demographic features for personalization. Rudovic et al. [208]
further developed a reinforcement learning approach to quickly tailor robot policies to new
users with minimal interaction data.

Other work has focused on learning latent user representations. For instance, He et al.
[209] and Schrum et al. [210] proposed methods that jointly learn an encoder mapping human
trajectories to a latent space of user types and a corresponding set of type-conditioned robot
policies. These systems support zero-shot or few-shot adaptation by inferring the latent
type of a new user and deploying the appropriate policy. Similarly, Huang, Luo, and Liu
[211] introduced a meta-learning framework that can quickly adapt to a new user using
gradient-based updates derived from user-provided numerical feedback at meta-test time.

In parallel, the field of ad hoc teamwork [212] explores how to design agents that adapt
to new partners without prior coordination. This problem can be formalized as a stochastic
Bayesian game [213, 214] or as an interactive partially observable Markov decision process [215],
where agents reason about hidden states and others’ models. Barrett and Stone [216]
proposed an online reinforcement learning approach that trains with diverse teammates
and selects policies based on a belief over the new partner’s type. Related areas include
zero-shot coordination [217-220]|, which trains agents to coordinate with unseen partners
without adaptation, and convention transfer [221], which adapts the agent’s partner-specific
convention behavior for each human user while reusing the same rule-dependent behavior.

These transfer-based methods are well-suited to scenarios where large-scale offline data is
available across users. However, they typically rely on strong assumptions about cross-user
generalization and may struggle when encountering user behaviors that fall outside the
training distribution.

By contrast, this thesis focuses on personalization in real-time, one-on-one human-robot
interaction, where the robot must adapt on the fly with minimal prior data. Rather than
transferring across users, the proposed methods operate under uncertainty about the current
user’s behavior and preferences. They emphasize robustness to data scarcity, making them
complementary to transfer learning approaches and better suited to safety-critical, assistive
settings such as robot-assisted dressing.

Chapter Summary

This chapter reviewed prior work on robot personalization through explicit feedback (sec-
tion 2.1), implicit behavioral modeling (section 2.2), and transfer learning (section 2.3). Each
line of research offers powerful tools for adapting robot behavior to human users, but com-
mon limitations remain: many approaches rely on costly human feedback, do not represent
uncertainty about human behavior and preferences, or assume access to large-scale multi-user
data. In contrast, this thesis focuses on real-time personalization from limited interaction
with a single user, where uncertainty is unavoidable. By explicitly modeling and responding
to this uncertainty, the proposed methods aim to enable robots that are not only personalized
but also safe, robust, and effective in real-world safety-critical human-robot interaction.
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Chapter 3

Technical Background

“All models are wrong, but some are useful.”

—George Box

In this chapter, we provide nomenclature, background on intervals, ellipsoids, zonotopes,
Gaussian Process (GP), and a high-probability bound for Gaussian random variables.

3.1 Nomenclature

In this thesis, calligraphic uppercase symbols denote sets, such as A, uppercase symbols
denote matrices, such as A, and lowercase symbols denote scalars or vectors. In addition, [n]
denotes the set {1,...,n}. For a scalar random variable z, the expectation and variance are
denoted by E [z] and V [z], respectively. The function sgn(y) denotes the sign of y.

3.2 Intervals, Zonotopes, and Ellipsoids

Intervals, zonotopes, and ellipsoids are high-dimensional geometry shapes. Due to their
appealing geometric and computational properties, they are widely used in the robust
control community to compute reachable sets. In other words, these shapes intuitively and
conveniently parameterize sets that bound the future states that a control system can possibly
reach at a given time, given some control input, based on all possible realizations of system
noises and uncertainties. In this section, we briefly review these shapes with some of their
properties.

3.2.1 Set Operations

The Minkowski sum between two sets, X and ), is defined as XY @Y = {z +y: x € X,y € V}.
Affine transformation for a set, X, is defined as b ® AX = {b+ Ax: xz € X'}.
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3.2.2 Interval

An interval along the real line, denoted by [a, b], is defined as {x € R: a < x < b}. A box in
R™ is a vector of intervals, ([ar,b1], ..., [an, bn]) ", which is defined as follows:

{x:: [xl,...,xn]TE]R”:‘v’izl,...,n:aigxigbi}.

A zero-centered box with radius r € R™ is denoted by [0£r] = ([—ry, 7], ..., [, m]) T C R™
For more details about intervals, please refer to Alamo, Bravo, and Camacho [222|, Rego
et al. [223], and Althoff [224].

3.2.3 Zonotope

Zonotopes are convex polytopes that are centrally symmetric [225]. Formally, a zonotope is a
set Z C R"™ that is defined as follows:

Z:={cz+Gz§: E e R™ ¢l < 1},

where cz € R™ denotes the zonotope’s center and Gz € R™ ™ denotes the zonotope’s
generator matrix. Each column of Gz is called a “generator”, and £ contains all generator
variables. Sometimes, when convenient, we denote Z by Z(Gz, cz) to explicitly expose the
generator matrix and the center. Additionally, given a zonotope Z, we let (Z). denote its
center and let (£)s denote its generator matrix.

Zonotopes are closed under affine transformations and Minkowski sums, both of which can
be computed exactly. Formally, A-Z(G,c)®b = Z(AG, Ac+0b) and Z1(G1,¢1) B Z2(Ga, 03) =
Z([G1 Gs],c1 + ¢2). For more details about zonotopes, please refer to Alamo, Bravo, and
Camacho [222], Rego et al. [223|, and Althoff [224].

3.2.4 Ellipsoid

An ellipsoid is a surface that can be obtained from a sphere by deforming it by an affine
transformation [226]. Formally, an ellipsoid is a set £ C R” that is defined as follows:

E={reR": (v —ce)"Qz'(x —ce) < 1},

where cg € R™ denotes the ellipsoid’s center and Q¢ € R™*"™ is a symmetric positive definite
shape matrix. Sometimes, when convenient, we denote £ by E(cg, Q¢) to explicitly expose
the center and the shape matrix.

Ellipsoids are invariant under affine subspace transformations, such that, for A € R™*" with
full column rank and b € R", we have that A-£(c, Q)®b = E(c+b, AQA") [52|. The Minkowski
sum between two ellipsoids is, in general, not an ellipsoid anymore, but can be bounded by
an ellipsoid. Formally, for all constant ¢ > 0, we have that £(c1, Q1) @ E(c2, @Q2) C E(C, Q.),
where @ = ¢; + ¢ and Q. = (1+ ¢ Q1 + (1 + ¢)Q; [52]. For more details about ellipsoids,
please refer to Kurzhanski and Valyi [227].
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3.3 Gaussian Process and Confidence Intervals

Gaussian Process (GP) is a nonparametric Bayesian approach for supervised learning of
nonlinear functions. Rather than assuming a fixed form for the function, GPs define a
distribution over possible functions, allowing the model to flexibly adapt to the data. One key
advantage of GPs is their ability to provide calibrated uncertainty estimates. In particular,
given a noisy training dataset and a testing point, a GP outputs not only a mean prediction,
but also a variance prediction reflecting the uncertainty of that prediction. This makes GPs
particularly useful in scenarios where managing model uncertainty is crucial, such as active
learning, robust control, and decision making under uncertainty.

In this thesis, we will use GPs to learn nonlinear functions, denoted by f: D — R",
where D C R™ denotes the function domain. Following Koller et al. [52], we first equivalently
reformulate the multi-output function, f, using a single-output surrogate function, f’: D x
{1,...,n,} — R. In particular, we define f’ by setting f’(z,j) = f;(z) for each dimension
j =1,...,n,, where f;(z) denotes the j-th output of f(x). This reformulate allows us
to conveniently apply the standard definition of GP with a scalar output and formulate
confidence intervals.

We use a GP, denoted by GP(m, k), to learn f’, where the prior mean function, m: R™
R, is set to 0. The function k: R™ x R"* — R denotes the covariance (or kernel) function.
Common kernels include the linear, squared exponential, and Matérn kernels.

The system is given a set of n training data points, denoted by {(z; € D,y; € R™)},_,, .
Suppose that each data output is corrupted by an i.7.d. Gaussian noise w € R™, where for
each dimension j = 1,...,n,, the noise w; ~ N(0,\2). Formally, for each data input z;,
the corresponding observed data output y; = f(z;) + w. By conditioning the GP on the n
training data points, for each dimension j =1,...,n,, we obtain a posterior mean function,
n.j: D — R, and a posterior variance function, afw-: D +— R, expressed as follows:

g (@) = k(@) (Ko + A2L,) "
02 (x) = k(z, ) — kn(2)T (Kp + N21) " ka(2)

n,j
where the vector ky(z) == [k(x1,2), ..., k(xn, x)] ", the kernel matrix K, == [k(z;, z)]
the data y,, ; = [y1,5, - .- ,yn,j}T, and I,, denotes the n-dimensional identity matrix.

If we assume that the true function, f’, belongs to the reproducing kernel Hilbert space
(RKHS) associated with the kernel, k. The smoothness of f’ can be measured via its RKHS
norm, denoted by || f’|| [52]. Then, if we further assume that f’ is smooth with a small
RKHS norm, then we can use the following lemma to construct confidence intervals for the
outputs of f’, or, equivalently, of f.

ii=12,....n

Lemma 3.3.1 (Lemma 1 in [228]). Fiz f in RKHS with the surrogate function f’ satisfies
| f'llx < B. Let § € (0,1). Suppose that the system observes n data points for the function f,
where each dimension of each data point is corrupted by an i.i.d. noise ~ N(0,\2). Then,
with probability at least (1 — ¢), the following holds:

Vn=1,2....Vj=1,....n,,Vr € D:  |pn;(x) — fj(x)| < By onj(x),
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where B, = B+ \/2(Ynn, +10g(1/0)). Here, the term ~,.,, denotes the information capacity
with n - n, data points for f', which can be bounded if the domain D is compact [52, 229].

This lemma states that with high probability, jointly for each dimension j, the output of
fj is bounded by a confidence interval centered at the posterior mean prediction g, ;.

For more details about GP posterior, GP prediction, RKHS, and information capacity,
please refer to Koller et al. [52], Srinivas et al. [230], and Chowdhury and Gopalan [231].

3.4 Gaussian Noise Bound

We consider a finite sequence of i.i.d. Gaussian noises, denoted by v; € R, for each time
t=1,...,T, where T" € N denotes a finite time horizon. With high probability, jointly
throughout all time steps, all the noises can be bounded by a zero-centered box in R™.
Formally:

Lemma 3.4.1 (Gaussian noise bound). Let T' € N denote a fized horizon and § € (0,1). Let
vectors vy, ...,vp € R™  such that for each timet =1,...,T and dimension j =1,..., n,,
the noise vy j ~ N(0,\2), with A\, € R. Then, with probability at least (1 —§), the following

holds: .
Tn,
04+ V2,4 /In 5 ] C R™.

Proof. The proof is similar to those for Lemma 5.1 in Srinivas et al. [229] and Lemma 4 in

Vt:L...,T:vtE

Berkenkamp [232]. For each time ¢t = 1,...,7 and dimension j = 1,...,n,, we bound v;; by
applying the Gaussian error function with a probability budget, 6 /(T - n,); we then obtain
the result via a union bound over all ¢ and j. ]
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Chapter 4

Reducing Uncertainty about Preferences
Using Cognitive Feedback

“Between stimulus and response there is a space.
In that space is our power to choose our response.
In our response lies our growth and our freedom.”

—Steven Covey or Viktor E. Frankl

A central question of this thesis is: How should a robot behave when it is uncertain
about the human? In interactive robotics, such as assistive dressing, shared autonomy, or
autonomous driving, robots must often infer a user’s preferences from limited feedback. A
common approach is to present the human with a pair of options, such as two visualized robot
paths [31], and observe their binary choice. This form of comparative feedback is popular
because it is easy to implement and places minimal cognitive load on users |74, 233, 234].

Even when the robot presents only one option and asks the human to rate it as “good” or
“bad” [235], the feedback can still be viewed as comparative: the user is implicitly comparing
the current option to an internal reference. However, whether the comparison involves
two presented options or one option versus an internal benchmark, binary feedback reveals
only which option is preferred, not how strongly it is preferred. This limited information
hinders the robot’s ability to reduce uncertainty and personalize efficiently. To address this,
researchers have incorporated additional explicit human feedback, such as ratings [236, 237],
labels [233], and slider bars [41, 74], but these approaches often complicate interfaces and
increase cognitive demands 234, 238].

This chapter proposes leveraging implicit human feedback, specifically response times, to
provide additional insights into preference strength. Unlike explicit feedback, response time is
unobtrusive and effortless to measure [239], offering valuable information that complements
binary choices [45, 240]. For instance, consider a dressing robot that assists a user each morning
and then asks, “Was that good or bad?” Some users may respond “good” most of the time,
either out of politeness, low expressiveness, or because they find most executions acceptable.
This consistent positive feedback makes it difficult for the robot to determine which of the
many “good” trajectories the user truly prefers. Response time can help disambiguate this.
Psychological research shows an inverse relationship between response time and preference
strength [239]: a fast “good” response may signal strong approval, while a slow “good” may
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indicate hesitation or weak preference. Thus, even when choices appear similar, response time
can uncover subtle differences in preference strength, helping to accelerate personalization.

We focus here on a simplified setting: the robot repeatedly asks a user to choose between
static options (e.g., snacks, visualized robot paths). This abstraction captures the core
challenge of learning from limited binary feedback while sidestepping the complexity of
physical robot execution. This work forms the foundation for future extensions to robotics,
where comparative queries may involve dynamic trajectories that unfold over time. In such
settings, the user would first experience two robot behaviors (e.g., two dressing motions [32, 47,
48]) before giving feedback. This chapter, therefore, provides a computational and theoretical
basis for using response times as a scalable signal in real-time, interactive systems.

Leveraging response times for preference learning presents notable challenges. Psychologi-
cal research has extensively studied the relationship between human choices and response
times [239, 241| using complex models like Drift-Diffusion Models [242] and Race Models 243,
244]. While these models align with both behavioral and neurobiological evidence [245], they
rely on computationally intensive methods, such as hierarchical Bayesian inference [246]
and maximum likelihood estimation (MLE) [247], to estimate the underlying human utility
functions from both human choices and response times, making them impractical for real-time
interactive systems. Although faster estimators exist [43, 248-251], they typically estimate
the utility functions for a single pair of options without aggregating data across multiple
pairs. This limits their ability to leverage structures like linear utility functions, which are
widely adopted both in preference learning with large option spaces [31, 34, 36, 252, 253| and
in cognitive models for human multi-attribute decision-making [254-256].

To address these challenges, this chapter proposes a computationally efficient method for
estimating linear human utility functions from both choices and response times, grounded in
the difference-based EZ diffusion model [43, 251]. Our method leverages response times to
transform binary choices into richer continuous signals, framing utility estimation as a linear
regression problem that aggregates data across multiple pairs of options. We compare our
estimator to traditional logistic regression methods that rely solely on choices [257, 258|. For
queries with strong preferences, our theoretical and empirical analyses show that response
times complement choices by providing additional information about preference strength.
This significantly improves utility estimation compared to using choices alone. For queries
with weak preferences, response times add little value but do not degrade performance. In
summary, response times complement choices, particularly for queries with strong preferences.

Our linear-regression-based estimator integrates seamlessly into algorithms for preference-
based bandits with linear human utility functions [257, 258|, enabling interactive learning
systems to leverage response times for faster learning. We specifically integrated our estima-
tor into the Generalized Successive Elimination algorithm [257] for fixed-budget best-arm
identification [259, 260]. Simulations using three real-world datasets [44-46| consistently
show that incorporating response times significantly reduces identification errors, compared
to traditional methods that rely solely on choices. To the best of our knowledge, this is the
first work to integrate response times into bandits and reinforcement learning.

In the broader context of this thesis, this chapter contributes to the answer
of how robots should behave when uncertain about human preferences: by
leveraging naturally available cognitive signals like response time, robots can
more efficiently reduce uncertainty without increasing user burden.

20



Section 4.1 introduces the preference-based linear bandit problem and the difference-
based EZ diffusion model. Section 4.2 presents our utility estimator, incorporating both
choices and response times, and offers a theoretical comparison to the choice-only estimator.
Section 4.3 integrates both estimators into the Generalized Successive Elimination algorithm.
Section 4.4 presents empirical results for estimation and bandit learning. Section 4.5 discusses
the limitations of our approach. Appendix A.l reviews response time models, parameter
estimation techniques, and their connection to preference-based RL.

4.1 Problem setting and preliminaries

We model the task of learning human preferences from feedback as a preference-based bandit
problem [258, 261|. In each round, the system (or “learner”) presents a query consisting of a
pair of options. The human chooses the option they prefer, and the system uses this binary
choice to update its estimate of the human’s underlying utility function. Over time, the goal
is to efficiently learn this utility function to identify the most preferred option.

4.1.1 Preference-Based Bandits with a Linear Utility Function

The learner is given a finite set of options (or “arms”), each represented by a feature vector
in Z C R?% and a finite set of binary queries, where each query is the difference between
two arms, denoted by X C R?. For instance, if the learner can query any pair of arms, the
query space is X = {z — 2': 2,2/ € Z}. In the dressing robot example from the beginning
of this chapter, the query space is X = {z — zqap: 2 € Z}, where z represents purchasing
a product and zg, represents skipping (often set as 0). For each arm z € Z, the human
utility is assumed to be linear in the feature space, defined as u, == z'6*, where #* € R?
represents the human’s preference parameters. For any query z € X, the utility difference is
then defined as u, = x'6*.

Given a query z = z; — 2o € X, we model human choices and response times using the
difference-based EZ-Diffusion Model (dEZDM) [43, 251], integrated with our linear utility
structure. (See appendix A.1.1 for a comparison with other models.) This model interprets
human decision-making as a stochastic process in which evidence accumulates over time
to compare two options. As shown in fig. 4.1a, after receiving a query z, the human first
spends a fixed amount of non-decision time, denoted by t,onqec > 0, to perceive and encode
the query. Then, evidence FE, accumulates over time following a Brownian motion with drift
20" and two symmetric absorbing barriers, a > 0 and —a. Specifically, at time tpondec + 7
where 7 > 0, the evidence is E,, = z"0* - 7 + B(7), where B(1) ~ N(0,7) is standard
Brownian motion. This process continues until the evidence reaches either the upper barrier
a or the lower barrier —a, at which point a decision is made. The random stopping time,
ty, = min{r > 0: £, € {a,—a}}, represents the decision time. If E,, = a, the human
chooses z; if E,;, = —a, they choose z;. The choice is represented by the random variable
¢z, where ¢, = 1 if z; is chosen, and —1 if 29 is chosen. The total response time, tgy ,, is
the sum of the non-decision time and the decision time: trr, = tnondec + t»- The choice
probability, expected choice, choice variance, and expected decision time are given as follows
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Figure 4.1: (a) depicts the human decision-making process for a binary query x € X, where
the human selects between two arms. The human first spends a fixed non-decision time
thondec €ncoding the query. Then, the human’s evidence accumulates according to a Brownian
motion with drift 276*. When the evidence reaches the upper barrier a or lower barrier
—a, the human makes a choice, denoted by ¢, = 1 or ¢, = —1, respectively. The random
stopping time of the accumulation process is the decision time t,, and the total response time
iS tRT 2 = tnondec + tz- (b) and (c) plot the expected choice Ec,] and the expected decision
time E[t,], with shaded regions representing one standard deviation, plotted as functions of
the utility difference x"6* for two barrier values a.

[262, eq. (A.16) and (A.17)]:

1
1 + exp(—2az"6*)

Vre X:Ple, =1] = ., Elc,] = tanh(az ')

(4.1)

B o Tk ) A= tanh(az"0%) if 270 £ 0

Vi) =1 —tanh*(az ' 0*), E[t,] = {a2 F2T0 = 0

This choice probability matches that of the Bradley and Terry [263] model. If the learner

relies solely on choices, then our bandit problem reduces to the transductive linear logistic
bandit problem [258].

Figures 4.1b and 4.1c illustrate the roles of the parameters 2 6* and a. First, the absolute
drift (or the absolute utility difference), |2 '6*|, reflects the human’s preference strength for
the query x. Larger values indicate stronger preferences, leading to faster decisions and more
consistent choices. Smaller values suggest weaker preferences, resulting in slower decisions
and less consistent choices. Second, the barrier a represents the human’s conservativeness
in decision-making [264|. A more conservative human (higher a) requires more evidence to
decide, resulting in slower but more consistent choices. In contrast, a less conservative human
(lower a) decides faster but makes less consistent choices.

We adopt the common assumption that t,,nqec is constant across all queries for a given
human [45, 256] and further assume that t,ongec is known to the learner. This assumption
enables the learner to perfectly recover ¢, from the observed tgr,. In section 4.4.2, we
empirically show that even when ¢,,,4¢c 1S unknown, its impact on the performance of our
method that relies on decision times is negligible.
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4.1.2 Learning Objective: Best-Arm Identification with a Fixed
Budget

We focus on the fixed-budget best-arm identification problem [259, 260]. The learner is
provided with a total interaction time budget B > 0, an arm space Z, a query space X,
and a non-decision time t,,nqcc. Both the human’s preference vector #* and the decision
barrier a are unknown. In each episode s € N, the learner selects a query z, € X, receives
human feedback (¢, s, ts, s) generated by the dEZDM, and consumes tgr 4, s time. When the
cumulative interaction time exceeds the budget B at some episode S, i.e., Zle tRT 2.5 > B,
the learner must stop and recommend an arm z € Z. The goal is to recommend the unique
best arm 2* := argmax,.z 2 ' §*, minimizing the error probability P[Z # 2*].

To address this problem, we adopt the Generalized Successive Elimination (GSE) al-
gorithm [257, 265, 266]. GSE divides the total budget B into multiple phases. In each
phase, it strategically samples queries until the phase’s budget is exhausted, collecting both
human choices and decision times. It then estimates the preference vector #* and eliminates
arms with low estimated utilities. Decision times play a key role in the estimation step by
providing complementary information about preference strength, which can enable more
accurate estimation of #* than choices alone. Next, in section 4.2, we introduce a novel
estimator that combines decision times and choices to estimate 6*. Then, in section 4.3, we
discuss how this estimator is integrated into GSE to improve preference learning.

4.2 Utility estimation

This section addresses the problem of estimating human preference 6* from a fixed dataset,
denoted by {x,cwz’i,tx,sz’i}xe Xmpreri€lna]” Here, Xample denotes the set of queries in the
dataset, n, denotes the number of samples for each query z € Xgmple, and s, ; denotes
the episode when x is sampled for the i-th time. Samples from the same query z are
i.i.d., while samples from different queries are independent. Section 4.2.1 introduces a new
estimator, the “choice-decision-time estimator,” which uses both choices and decision times,
in contrast to the commonly used “choice-only estimator” that only uses choices [257, 258].
Sections 4.2.2 and 4.2.3 theoretically compares these estimators, analyzing both asymptotic
and non-asymptotic performance and highlighting the advantages of incorporating decision
times. Section 4.4.1 presents empirical results that validate our theoretical insights.

4.2.1 Choice-decision-time estimator and choice-only estimator

The choice-decision-time estimator is based on the following relationship between human
utilities, choices, and decision times, derived from eq. (4.1):

10 Ele)
Vre X:u @ EWL] (4.2)

Intuitively, when a human provides consistent choices (i.e., large |E[c,]|) and makes decisions
quickly (i.e., small E[t,]), it implies a strong preference (i.e., large |x"6*|). This relationship
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formulates the estimation of 6* as a linear regression problem. Accordingly, the choice-
decision-time estimator calculates the empirical means of both choices and decision times,
aggregates the ratios across all sampled queries, and applies ordinary least squares (OLS) to
estimate 0*/a. Since the ranking of arm utilities based on 6*/a is identical to that based on
0%, estimating 6*/a is sufficient for identifying the best arm. Formally, this estimate of 6*/a,

denoted by §CH,DT, is given by:

1

~ Zr.t_zl Cos.

Ocapr = Z N T Z Ngp T =0 4.3
7 ’ ’ Z?:zl tzvsm,i ( )

TE€Xsample 2E€EXsample

In contrast, the choice-only estimator is based on eq. (4.1), which shows that for each

query = € X, the random variable (¢, 4+ 1)/2 follows a Bernoulli distribution with mean

1/[1+exp(—x" - 2a#*)]. Similar to the choice-decision-time estimator, the parameter 2a does

not impact the ranking of arms, so estimating 2a6* is sufficient for best-arm identification.

This estimation is formulated as a logistic regression problem [257, 258, with MLE providing
the following estimate of 2a6*, denoted by é\CH:

fen = arg max Z Z log p(cps,, ' 0), (4.4)

d X
OeR IeXsample =1

where u(y) = 1/[1 + exp(—y)] is the standard logistic function. While this MLE lacks a
closed-form solution, it can be efficiently solved using optimization methods like Newton’s
algorithm [267, 268].

4.2.2 Asymptotic normality of the two estimators

The choice-decision-time estimator from eq. (4.3) satisfies the following asymptotic normality
result:

Theorem 4.2.1 (Asymptotic normality of §CH,DT). Given a fized i.i.d. dataset, denoted by
{:1:, Carsai tmz’i}ie[n] for each x € Xsqmpie, where ZwGXsampze zx' = 0, and assuming that the

datasets for different ¥ € Xyumpie are independent, then, for any vector y € R, as n — oo,
the following holds:

vy’ <5CH,DT,n - 6’*/@) N N(0,¢?/a?).

Here, the asymptotic variance depends on a problem-specific constant, (%, with an upper

bounded:

2
S
TE

-1 .
min, E[t ] -xxT>
sample[ gcle‘xsamplc [ w/]

The proof is provided in appendix A.2.2. The asymptotic variance upper bound shows that
all sampled queries are weighted by a common factor mingcx,,, . E [txs], which is the smallest
expected decision time among all the sampled queries in Xgmple. This weight represents
the amount of information provided by each query’s choices and decision times for utility
estimation. A larger weight indicates that all queries in Xjymple provide more information,

leading to lower variance and better estimates.
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Figure 4.2: This figure illustrates key terms from our theoretical analyses, highlighting
the different contributions of choices and decision times to utility estimation. These terms
are functions of the utility difference z'0* and are plotted for two barrier values, a. (a)
compares the weights E [t,] and a?V [c,] in the asymptotic variances for the choice-decision-
time estimator (orange, theorem 4.2.1) and the choice-only estimator (gray, theorem 4.2.2),
respectively. This comparison shows that decision times complement choices, particularly for
queries with strong preferences. (b) compares the weights in the non-asymptotic concentration
bounds (theorems 4.2.3 and 4.2.4), showing similar trends, though these weights may not be
optimal due to proof techniques.

In contrast, the choice-only estimator from eq. (4.4) has the following asymptotic normality
result, as derived from Fahrmeir and Kaufmann [269, corollary 1]:

Theorem 4.2.2 (Asymptotic normality of §CH) Given a fixed i.i.d. dataset, denoted by
{x, C,505 tm,sx’i}ie[n] for each x € Xyqmpie, where Zzexg zx' = 0, and assuming that the

sample

datasets for different x € Xsumpie are independent, then, for any vector y € R, as n — oo,
the following holds:

~ N\ D
V" (Boun —2a0) 2> N (o, iy, Wcﬂlwl) -

This asymptotic variance shows that each sampled query € Xumple is weighted by its
own factor a? V [c,], representing the amount of information the query’s choices contribute to
utility estimation. A larger weight indicates that the query contributes more information,
leading to better estimates.

The weights in both theorems highlight the different contributions of choices and decision
times to utility estimation. In the choice-only estimator (theorem 4.2.2), each query is
weighted by a2V [c,], which depends on the utility difference x76* for a fixed barrier a.
As shown by the gray curves in fig. 4.2a, this weight quickly decays to zero as preferences
become stronger (i.e., as |z '0*| increases). This indicates that choices from queries with
strong preferences provide little information. Intuitively, when preferences are strong, humans
consistently select the same option, making it hard to distinguish whether their preference is

95



moderately or very strong. As a result, choices from such queries contribute minimally to
utility estimation. This intuition aligns with the dressing robot example at the beginning of
this chapter.

For the choice-decision-time estimator (theorem 4.2.1), queries are weighted by the
minimum expected decision time over Xample, i-€., mingcx,,,. . E [t], which depends on both
Xsample and E [t,]. To better understand this weight, we first plot E [t,] without the ‘min’
operator as the orange curves in fig. 4.2a. Comparing the orange and gray curves shows
that E [t,] is generally larger than the choice-only weight, a? V [c,]. The actual weight in the
choice-decision-time estimator, which is the minimum expected decision time across sampled
queries, is less than or equal to the orange curve but is likely still higher than the choice-only
weight, especially for queries with strong preferences. This suggests that when preferences
are strong, decision times complement choices by capturing preference strength, leading to
improved estimation.

When queries have weak preferences, the choice-decision-time weight may be lower than
the choice-only weight. However, since the choice-decision-time weight represents only an
upper bound on the asymptotic variance (theorem 4.2.1), no definitive conclusions can be
drawn from the theory alone. Empirically, as shown in section 4.4.1, decision times add little
value but do not degrade performance.

As the barrier a increases, the choice-decision-time weight rises. In contrast, the choice-
only weight increases for queries with weak preferences, but this increase is concentrated in
a narrower region, with weights decreasing elsewhere. Intuitively, a higher barrier reflects
greater conservativeness in human decision-making, leading to longer decision times and more
consistent choices (fig. 4.1). As a result, more queries exhibit strong preferences, making
choices from these queries less informative.

4.2.3 Non-asymptotic concentration of the two estimators for utility
difference estimation

In this section, we focus on the simpler problem of estimating the utility difference for a
single query, without aggregating data from multiple queries. Comparing the non-asymptotic
concentration bounds of both estimators, in this case, provides insights similar to those
discussed in section 4.2.2. Extending this non-asymptotic analysis to the full estimation of
the preference vector 0* is left for future work.

Given a query x € X, the task is to estimate the utility difference u, =z using the
fixed i.i.d. dataset {(cwm, tac,sm,i)}ie[nz]- Applying the choice-decision-time estimator from
eq. (4.3), we get the following estimate (for details, see appendix A.2.3), which estimates
u,/a rather than u,: -

Uy, CH,DT = M (4.5)
) ) an

=1 "%,Szx,i

TQ*

In contrast, applying the choice-only estimator from eq. (4.4), we get the following estimate
(for details, see appendix A.2.3), which estimates 2au, rather than u,:

Ny

—~ _ 1 Cr,sp4 +1
Upcl = 1 (n_ Z T) : (4.6)
T

=1
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where (c,s, , +1)/2 is the binary choice coded as 0 or 1, and p~'(p) = log (p/(1 — p)) is the
logit function (inverse of u introduced in eq. (4.4)).

Notably, the choice-only estimator in eq. (4.6) aligns with the EZ-diffusion model’s drift
estimator [43, eq. (5)]. Moreover, the estimators in Xiang Chiong et al. [270, eq. (6)] and
Berlinghieri et al. 251, eq. (7)] combine elements of both estimators from eqs. (4.5) and (4.6).
In section 4.4.2, we demonstrate that both estimators from Wagenmakers, Van Der Maas,
and Grasman [43, eq. (5)] and Xiang Chiong et al. [270, eq. (6)] are outperformed by our
proposed estimator in eq. (4.3) for the full bandit problem.

Assuming the utility difference u, # 0, the choice-decision-time estimator in eq. (4.5)
satisfies the following non-asymptotic concentration bound, proven in appendix A.2.3:

Theorem 4.2.3 (Non-asymptotic concentration of u, cypr). For each query x € X with
uz # 0, given a fived i.i.d. dataset, denoted by {(nysz,ﬂtx,sx,i)}ie[n ) for any € > 0 satisfying

e < min {|u.|/(V2a), (1 + Vv2) alu,|/E [t:]}, the following holds:

B

where m¢g pi™ (270%) =Et.] / [(2+2V2) al.

Uy, CH,DT — %‘ > €> < 4exp <— [mem o (.’ETQ*)]Z ng [€- a]2> ,

In contrast, the choice-only estimator in eq. (4.6) has the following non-asymptotic
concentration result, adapted from Jun et al. [258, theorem 5]|':

Theorem 4.2.4 (Non-asymptotic concentration of 4, cu). For each query x € X, given a
fixed i.i.d. dataset, denoted by {Cx7srvi}ie[n E for any positive € < 0.3, if
1 3?log(6e) 641og(3)
- max : ,
) €2 1 —¢€2/0.3

Ng >

f(2au,

then the following holds:

P (|t cn — 2au,| > €) < 6exp (— [ (a:'TG*)}Q Ny [6/(2a)]2> :

where mgy " (270%) = a+/V[c,] /2.4

The weights mégpyp (+) and meg ™" (+) from theorems 4.2.3 and 4.2.4, respectively, are

functions of the utility difference z'6* for a fixed barrier a. These weights determine how
quickly estimation errors decay as the dataset size n, grows, with larger weights indicating
faster error reduction. While these weights may not be optimal due to proof techniques,
they highlight the distinct contributions of choices and decision times, consistent with our
asymptotic analysis in section 4.2.2. Figure 4.2b compares the weights for the choice-decision-
time estimator (orange, megpy (+)) and the choice-only estimator (gray, mey ™ (+)). For
strong preferences, the choice-only weights quickly decay to zero, while the choice-decision-
time weights remain relatively large. This supports our key insight that decision times
complement choices and improve estimation for queries with strong preferences.

n Jun et al. [258, theorem 5], we let 21 = -+ =2, =1 and tegg = d = 1.
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In summary, both asymptotic (section 4.2.2) and non-asymptotic (section 4.2.3) analyses
demonstrate that the choice-decision-time estimator extracts more information from queries
with strong preferences. This finding aligns with prior empirical work [45] and is further
supported by our results in section 4.4.1.

In fixed-budget best-arm identification, our choice-decision-time estimator’s ability to
extract more information from queries with strong preferences is especially valuable. Bandit
learners, such as GSE [257], strategically sample queries, update estimates of #*, and eliminate
lower-utility arms. With the choice-only estimator, learners struggle to extract information
from queries with strong preferences. To resolve this, one approach is to selectively sample
queries with weak preferences, but this has two drawbacks. First, queries with weak preferences
take longer to answer (i.e., require more resources), potentially lowering the ‘bang per buck’
(information per resource) [271]. Second, since 6* is unknown in advance, learners cannot
reliably target queries with weak preferences. In contrast, with our choice-decision-time
estimator, learners leverage decision times to gain more information from queries with strong
preferences, improving bandit learning performance. We integrate both estimators into bandit
learning in section 4.3 and evaluate their performance in section 4.4.

4.3 Interactive learning algorithm

We introduce the Generalized Successive Elimination (GSE) algorithm [257, 265, 266] for
fixed-budget best-arm identification in preference-based linear bandits, and outline the key
options for each GSE component, which we empirically compare in section 4.4.

The pseudo-code for GSE is shown in algorithm 1. The algorithm uses a hyperparameter
7 to control the number of phases, the budget per phase, and the number of arms eliminated
in each phase. GSE divides the total budget B evenly across phases and reserves a buffer,
sized by another hyperparameter By,g, to prevent overspending in any phase (line 4). In
each phase, GSE computes an experimental design A, a probability distribution over the
query space, to guide query sampling. We consider two designs: the transductive design [253],
Atrans (line 5), and the weak-preference design [258], Ayeax (line 6). Both designs minimize
the worst-case variance of utility differences between surviving arms. The transductive design
weights all queries equally, whereas the weak-preference design prioritizes queries with weak
preferences to counter the choice-only estimator’s difficulty in extracting information from
queries with strong preferences (section 4.2). Since #* is unknown, the weak-preference design
identifies queries with weak preferences based on the previous phase’s estimate §CH. Then,
GSE samples queries based on the design (line 7) and, after exhausting the phase’s budget,
estimates 6* using either the choice-decision-time estimator §CH,DT (line 8) or the choice-only
estimator Ocy (line 9). It then eliminates arms with low estimated utilities (line 10). This
process repeats until only one arm remains, which GSE recommends as the best arm (line
12).

The key difference between algorithm 1 and previous GSE algorithms [257, 265, 266]
is that our setting involves queries with random response times, unknown to the learner.
Previous work assumes fixed resource consumption per query and uses deterministic rounding
methods [253, 257| to pre-allocate queries. This approach does not handle random resource
usage. Instead, we adopt a random sampling procedure [272, 273] in line 7 to allocate queries
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based on the design. Random resource usage also requires tuning the elimination parameter
71, to balance data collection and arm elimination, and the buffer size By.g, to prevent
overspending. In our empirical study (section 4.4.2), we manually tune both parameters.
Further theoretical analysis is needed to better understand and optimize them.

Algorithm 1 Generalized Successive Elimination (GSE) [257]

1: Input: Arm space Z, query space X, non-decision time ¢,on4ec, and total budget B.
2: Hyperparameters: Elimination parameter 7 and buffer size By g.

3: Initialization: Z; < Z.

4: for each phase k =1,..., K = [log, | Z|| with the budget By := B/K — By do

5: Design 1. A = Agransk < argmin, v max, .ez, ||z — 2|2

(er){ )\IrxT)—l .
2

(Exex ﬂ(mTé\kfﬂ)\xzzT)_l'
i Sample queries z; ~ Ay and stop at Jj, if Z;]iil IRT2;,; < By and Zj; tRT,2;,5 > B

3 - 3 /
6: Design 2. A\; = Ayeak,k < argminyg,jx max,2cz, ||z — 2'||

8: Estimate 1. @\k = ¢/9\CH7DT7;€ + apply eq. (4.3) to all the J; samples.
Estimate 2. gk = 5CH7k < apply eq. (4.4) to all the J; samples.

10: Update Zj1 < Top- Pz—n’“'

11: end for

12: Output: the single one z € Zx ;.

~

-‘ arms in Zj,, ranked by the estimated utility 2.

4.4 Empirical results

This section empirically compares the GSE variations introduced in section 4.3: (1) (Agans, §CH,DT):
Transductive design with choice-decision-time estimator. (2) (Arans, fcn): Transductive de-
sign with choice-only estimator. (3) (Aweak, fcn): Weak-preference design with choice-only
estimator.

4.4.1 Estimation performance on synthetic data

We evaluate the estimation performance of the GSE variations on the “sphere” synthetic
problem, a standard linear bandit problem in the literature [272, 274, 275]. Details are
provided in appendix A.3.1.

Estimation performance, as discussed in section 4.2, depends on the utility difference x
and the barrier a. We vary a over a range of values commonly used in psychology [45, 246]. To
examine how preference strength impacts estimation, we scale each arm z to cz - z, effectively
scaling each utility difference z"6* to cz - 2" 6*. Small cz values correspond to problems with
weak preferences, while large values correspond to strong preferences. For each (cz,a) pair,
the system generates 100 random problem instances and runs 100 repeated simulations per
instance. In each simulation, the GSE variations sample 50 queries, ignoring the response time
budget, and compute 6. Performance is evaluated by Plarg max,.z z' 6 # 2*|, which reflects
the best-arm identification goal defined in section 4.1. To isolate the effect of estimation, we

T@*
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Figure 4.3: Three heatmaps show estimation error probabilities, Plarg max,. » zT@\# z*], for
three GSE variations, shown as functions of the arm scaling factor cz and barrier a. Darker
colors indicate better estimation. (a) The choice-only estimator fcy with the transductive
design Ayans struggles as cz increases (i.e., preferences become stronger), highlighting that
choices from queries with strong preferences provide limited information. (b) The weak-
preference design Ayeax improves (a) by sampling queries with weak preferences but assumes
perfect knowledge of #* and equal resource consumption across queries. (c¢) The choice-
decision-time estimator é\CH,DT with Agrans Outperforms both choice-only methods in (a) and
(b), showing that decision times complement choices and improve estimation, especially for
strong preferences.

allow Ayear access to the true 6%, enabling it to perfectly compute the terms ﬂ(xTG*) used in
line 6 of algorithm 1.

As shown in fig. 4.3a, fixing the barrier ¢ and examining the vertical line, as cz increases
and preferences become stronger, the performance of the choice-only estimator with the
transductive design first improves and then declines. The initial improvement arises because
larger ¢z increases utility differences between the best arm and others, theoretically simplifying
best-arm identification. The subsequent decline, highlighted by the dark curved band, supports
our insight from section 4.2 that choices from queries with strong preferences provide limited
information. Fixing ¢z and examining the horizontal line, performance first improves and then
declines. This trend aligns with fig. 4.2a and section 4.2.2, where higher barriers a increase
the choice-only weights for queries with weak preferences, initially improving performance.
However, as a grows, fewer queries exhibit increased weights, while most queries’ weights
decrease, leading to a later performance drop.

In Figure 4.3b, for moderate cz, the choice-only estimator with the weak-preference
design outperforms the transductive design (fig. 4.3a), demonstrating that focusing on queries
with weak preferences improves estimation. However, as cz becomes too large, performance
declines because many fi(z'0*) in line 6 of algorithm 1 approach zero, preventing informative
queries from being sampled. This advantage of the weak-preference design assumes perfect
knowledge of 6* and equal resource consumption across queries. In practice, where 6* is
unknown and weak-preference queries require longer response times, the transductive design
performs better, as shown in section 4.4.2.
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Figure 4.3c shows that the choice-decision-time estimator consistently outperforms the
choice-only estimators under both the transductive and weak-preference designs, particularly
for strong preferences. This suggests that for queries with strong preferences, decision
times complement choices and improve estimation, confirming our theoretical insights from
section 4.2, while for queries with weak preferences, decision times add little value but do not
degrade performance. The performance also improves with a higher barrier a, supporting the
insights conveyed by fig. 4.2a and section 4.2.2.

4.4.2 Fixed-budget best-arm identification performance on real
datasets

This section compares the bandit performance of six GSE variations. The first three are
as previously defined at the beginning of section 4.4: (Atvans: @cupr), (Atrans, fcn), and
(Aweak, OcH)- R

The 4th GSE variation, (Agans, fcnrr), evaluates the performance of the choice-decision-
time estimator when the non-decision time ¢,,,4ec is unknown. The estimator, @\CHRT, is
identical to the original choice-decision-time estimator from eq. (4.3), but with response times
used in place of decision times. R

The 5th GSE variation, (Atrans, fcm logit), 1S based on Wagenmakers, Van Der Maas, and
Grasman [43, eq. (5)|, which states that ' - (2a0*) = p~'(Plc, = 1]), where u~1(p) =
log (p/ (1 — p)). By incorporating our linear utility structure, we obtain the following choice-
only estimator §CH,1ogiti

1
~ ) T 1 (=
QCH,logit = E Ng TX E Ng T - W <Q:3:> )

xGXsample me‘}('sample

where €, = % Yo % (Cm,sm,i + 1) is the empirical mean of the binary choices coded as 0 or
1.

The 6th GSE variation, (Agans, @\CHyDT,logit), is based on Xiang Chiong et al. [270, eq. (6)],
which states that " 6* = sgn (c;) /E[c,] /E [t.] - 0.5 u=' (P [c, = 1]). This identity forms the
foundation of the estimator in Berlinghieri et al. [251, eq. (7)]. By incorporating our linear

utility structure, we obtain the following choice-decision-time estimator Ocu pr iogit:

N | —
tl

/7~
@)
—

-1
~ E|c,
OcH, DT logit = Z ng Z ng - sgn () \/ [[t ]

meXsample ze‘)(sample

&=

We evaluate six GSE variations on bandit instances constructed from three real-world
datasets of human choices and response times. Each dataset includes multiple participants.
For each participant, we estimated dEZDM parameters, built a bandit instance, and sim-
ulated the GSE variations to assess performance. Details on experimental procedures are
provided in appendix A.3. Key results for the three domains are shown in fig. 4.4, with
full results in appendix A.3. First, (Atrans, fcmpr) consistently outperforms (Aans, Ocn),
demonstrating the benefit of incorporating decision times. Second, both of these variations
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Figure 4.4: This figure shows violin plots (with overlaid box plots) for datasets (a), (b),
and (c), showing the distribution of best-arm identification error probabilities, P [ # z*],
for all bandit instances across six GSE variations and two budgets. The box plots follow
the convention of the matplotlib Python package. For each GSE variation and budget,
the horizontal line in the middle of the box represents the median of the error probabilities
across all bandit instances. Each error probability is averaged over 300 repeated simulations
under different random seeds. The box’s upper and lower borders represent the third and
first quartiles, respectively, with whiskers extending to the farthest points within 1.5x the
interquartile range. Flier points indicate outliers beyond the whiskers.

outperform (Ayeak, §CH), as discussed in section 4.4.1. Third, (Agans, §CH7DT) performs similarly
t0 (Atrans, §CH,M), suggesting that not knowing the non-decision time has minimal impact.
Finally, (A¢rans, §CH710git) [43] and (A¢rans, §CH7DT710git) [270] do not perform as consistently well
as (Atrans, §CH,DT), highlighting the effectiveness of our proposed choice-decision-time estimator

(eq. (4.3)).

4.5 Conclusion

This chapter presented the first contribution of the thesis: a cognitive model-based algorithm
that uses both human binary choices and response times to reduce uncertainty in preference
learning. By integrating a well-established psychological model of decision-making, the drift
diffusion model, into a linear bandit algorithm, we showed that response times provide
additional information about the strength of user preferences.

This insight addresses a key challenge in human-robot interaction: how to make learning
from humans more sample-efficient, particularly when user feedback is scarce or expensive.
Empirical results in simulated recommender systems confirmed that incorporating response
times significantly reduces misidentification of preferred options compared to choice-only
methods.

In the broader context of this thesis, this work demonstrates that implicit feedback, which
is naturally available and costless to the user, can be systematically leveraged to reduce the
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robot’s uncertainty about the human preferences. This finding contributes to answering the
central question of this thesis: How should a robot behave when it is uncertain about the
human? It does so by showing that uncertainty can be reduced more efficiently through richer
models of human cognition. While this chapter focuses on a simplified setting with static
options as discussed at the beginning of this chapter, it lays the theoretical and computational
groundwork for future extensions to robotics, where feedback will be gathered over dynamic,
time-extended robot behaviors. In such settings, understanding response time will be even
more crucial for efficient personalization under uncertainty (see section 7.2 for more details).
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Chapter 5

Representing and Respecting Uncertainty
for Robust State Estimation

“It ain’t what you don’t know that gets you into trouble.
It’s what you know for sure that just ain’t so.”

—Mark Twain

State estimation is critical for human-robot interaction, where human physical states
may be partially observed due to occlusions [276], and latent mental states can influence the
interaction [130, 277]. To safely interact with humans, robots typically estimate such states
using models [278], including a dynamics model that describes how the human arm moves
during interaction, and an observation model that captures how that motion is perceived
through the robot’s sensors.

Due to the complexity of the human body and behavior, manually specifying these models
is difficult. Instead, they are typically learned from data [56]. Because user-specific data is
often limited, the resulting learned models can be inaccurate. This introduces “epistemic
uncertainty”, which is the uncertainty about the parameters or structure of the models
themselves, arising from limited or imperfect training data [279]. At the same time, human
motion is inherently stochastic, and sensor measurements are noisy, introducing “aleatoric
uncertainty,” which is the uncertainty due to intrinsic stochasticity in the system [279].

Both types of uncertainty must be accounted for to ensure reliable state estimation and
safe robot behavior. If these uncertainties are ignored, the robot may become overconfident,
potentially misestimating the human state and leading motion planning to generate unsafe
or ineffective behavior. For example, in robot-assisted dressing (see fig. 5.1), uncertainty can
cause the robot to believe the arm is in the wrong place, leading to overly aggressive actions.

To address this challenge, this chapter focuses on how robots can explicitly represent
and respect both epistemic and aleatoric uncertainty in state estimation, especially when
the underlying models are learned. Our approach builds on the notion of consistency, a key
property in estimation: the estimator’s belief should never be more confident than justified
by the available information.

In the broader context of this thesis, this chapter contributes to the answer
of how robots should estimate hidden human states when they are uncertain
about human behavior: by explicitly modeling what the robot does not know
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Figure 5.1: In a robot-assisted dressing scenario, we deployed our set-based estimator, GP-
ZKF, to estimate the visually occluded human elbow position [276]. With human dynamics
and observation models learned via Gaussian Process regression, GP-ZKF constructs zonotopic
state estimates (illustrated with the green box) based on the force measurements at the
robot end effector. By handling epistemic uncertainties in the learned models, GP-ZKF
guarantees probabilistic consistency, i.e., the true human elbow positions are contained within
the zonotopes across all time steps, with a high probability.

and estimating conservatively, the robot can maintain reliable awareness of the
human’s state, even under occlusions and model errors.

In the stochastic estimation paradigm, such as the Extended Kalman Filter (EKF), a
consistent estimate is defined as an unbiased point estimate together with a covariance
matching the actual estimation error [280]. However, under nonlinear or learned models, this
definition can break down due to accumulated linearization and modeling errors. In SLAM,
the inconsistency of EKF-based approaches such as GP-EKF [281] has been widely studied
in terms of linearization error [282, 283] and state unobservability [284, 285]. Prior work has
attempted to address these issues by constraining the Jacobians [282, 284] and defining local
frames to handle nonlinear errors [285].

Instead, we adopt a set-based estimation paradigm, which constructs sets, rather than
points, as state estimates. In this view, consistency means that the true state lies within the
estimated set [222|. Set-based methods allow principled reasoning about both aleatoric and
epistemic uncertainty. Prior literature has focused on settings where models are known, i.e.,
epistemic uncertainty can be ignored, and provides guarantees under aleatoric uncertainty [222,
223]. In contrast, we address the more realistic setting where both the dynamics and
observation models are nonlinear and learned, and thus uncertainty arises from both sources.

We introduce the Gaussian Process-Zonotopic Kalman Filter (GP-ZKF), a set-based
estimation algorithm that provides a probabilistic consistency guarantee under learned
dynamics and observation models. GP-ZKF learns both models using Gaussian Process
(GP) regression, and uses their confidence intervals [52] to calibrate epistemic uncertainty.
This extends Combastel [286] that assumed bounded epistemic uncertainties in the linear
parameter-varying enclosures of the nonlinear models.

Similar to set-based estimators [222, 223|, but specifically for scenarios with learned models,
our approach recursively produces set-based estimates that are represented as zonotopes
(a special type of polytope). These zonotopes are designed to respect both epistemic and
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aleatoric uncertainties and are guaranteed to contain the true states across all time steps,
with high probability, rendering GP-ZKF consistent when both nonlinear models are learned.

We also formally connect our set-based estimator, GP-ZKF, with the corresponding
stochastic estimator, GP-EKF [281], and prove that GP-ZKF reduces to GP-EKF if GP-ZKF
omits linearization errors and aleatoric, and simplifies epistemic uncertainties. This theoretical
connection under nonlinear and learned models extends Combastel [287], which connects
set-based and stochastic estimators under linear and known models.

Our contributions are:

e We propose GP-ZKF, a set-based state estimator with probabilistic consistency guaran-
tees under both epistemic and aleatoric uncertainty, for the case where both dynamics
and observation models are nonlinear and learned.

e We formally relate GP-ZKF to its stochastic counterpart, GP-EKF [281], and analyze
their equivalence under simplified uncertainty assumptions.

We evaluate GP-ZKF in both a simulated pendulum environment and a real-world robot-
assisted dressing scenario. Our results show that GP-ZKF provides not only more consistent,
but also less conservative state estimates than the stochastic baselines (GP-EKF, GP-UKF,
and GP-PF [281]). To the best of our knowledge, this is the first method to offer probabilistic
consistency guarantees for state estimation with learned nonlinear models.

Section 5.1 defines the system setup, and section 5.2 introduces probabilistic consistency.
Section 5.3 presents our algorithm, section 5.4 contains theoretical results, and section 5.5
provides empirical evaluation.

5.1 System Formulation

We model the human-robot system as a discrete-time dynamical system with finite-horizon
T € N, nonlinear dynamics and observation functions, and additive noises. Formally, for
t=1,...,T, the system can be described as follows:

Ty = d(xt—laut—bwt—l)
= foe—1,up—1) + g(@p—1, up—1) + Wiy, (5.1)
Yr = o(xy, ug, v) = h(xg, ug) + vy (5.2)

Here, x; € R represents the hidden system state at time ¢, for instance, the position of
the human elbow. The robot applies a control signal u; € 44 C R™ and receives a sensor
measurement y; € R™. The system is affected by process noise w; € R™ and measurement
noise v; € R™.

The dynamics function d(-) models how the hidden human state evolves over time, based
on the previous state x;_; and robot control u;_;. This function is decomposed into two
parts: (1) f(-) is a known nominal dynamics model (e.g., a parametric physics model). (2)
g(+) is an unknown residual dynamics model to be learned from data.

The observation function o(-) describes how the current hidden state and control are
perceived through the robot’s sensors. It is composed of: (1) A(-), an unknown observation
model to be learned from data, and (2) v, the sensor noise.
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To make these Gaussian noise assumptions compatible with set-based estimation, we
bound the noise terms within boxes using concentration inequalities:

Remark 5.1.1. By applying lemma 3.4.1, we construct boxes, denoted by W C R™ and
Y C R™, that bound the process noise, w, and the measurement noise, v, respectively.
Formally, for a given confidence level 6% € (0, 1), with a probability at least (1 — 0™), jointly
for each time step t = 1,...,T, we have that w;,_; € W. Similarly, for a given confidence
level 0¥ € (0,1), with a probability at least (1 — V), jointly for each time step t = 1,...,T,
we have that v, € V.

This system formulation captures both sources of uncertainty introduced in the beginning
of this chapter: (1) epistemic uncertainty, arising from the unknown components g(-) and A(-)
in the learned models, and (2) aleatoric uncertainty, arising from the inherent stochasticity
of the system and noisy sensor readings. Our goal in the following sections is to develop a
state estimator that respects both types of uncertainty and provides conservative, reliable
estimates of the hidden human state.

5.2 Problem Definition

Our goal is to develop a set-based state estimator that can produce consistent estimates.
Let X C R™* denote a set-based state estimate produced by our algorithm at time ¢. By
assuming that the controls are given, the estimation process, at time ¢ = 1,...,T can be
represented as a recursive function, X; = E(X,_1, w1, Uz, Yr)-

When the dynamics and observation models, d(-) and o(-) (respectively), are known, prior
arts in set-based state estimation [222, 223, 288| have achieved strict consistency guarantees.
In contrast, we focus on a scenario where both d(-) and o(-) are learned with a limited amount
of data; hence, we relax the strict consistency and focus on probabilistic consistency, or
d-consistency, defined as follows:

Definition 5.2.1 (6-consistency). Given 6 € (0,1); an initial set-based estimate, Xy C R
such that x¢ € ??0; a sequence of controls, {u;}1_, C U; and a sequence of measurements,
{y:}I_, C R™; Then, a state estimator is 0-consistent if the sequence of estimates, {é?t}tT:l,
computed via E, satisfies:

P Vtzl...T:xtE/\Aft] >1-_5.

This definition states that d-consistent estimators are able to guarantee that, with high
probability, jointly for each time step within a finite time horizon, the set-based estimate
contains the true state. Note that: (1) Definition 5.2.1 implies that the high-probability
consistency guarantee holds jointly throughout the finite time horizon, rather than per time-
step in the form of V¢ = 1...T: Pr[z; € A;] > 1 — § [289]. (2) Definition 5.2.1 indicates a
filtering (rather than smoothing) problem, as future measurements are never used to estimate
past or current states.

Problem Statement. Design a set-based estimator that guarantees d-consistency under the
epistemic uncertainties in the learned models, g(-) and h(-), and the aleatoric uncertainties in
the noises, w and v.
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Figure 5.2: A flowchart illustrating the three phases of the set-based estimator, GP-ZKF, at
time t = 1,...,T: (1) Prediction: Given the previous zonotopic estimate X;_; and control
uy—; (omitted in the figure), GP-ZKF predicts a dynamics-consistent zonotope X using
the learned dynamics model. The dynamics contains a known function f(-), a learned
function ¢(-), and a process noise w (eq. (5.1)). (2) Measurement: Given a new sensor
measurement 7, control u; (omitted in the figure), and the predicted zonotope X;, GP-ZKF
computes a measurement-consistent polytope ?yt using the learned observation model. The
observation function contains a learned function A(-), and a measurement noise v (eq. (5.2)).
(3) Correction: The new state estimate X, is formed by intersecting the prediction and
measurement sets, i.e., X, N Tyt.

5.3 Method

Our method, GP-ZKF, is designed to represent and respect both epistemic and aleatoric
uncertainties during state estimation. To represent epistemic uncertainty, we leverage
Gaussian Processes (GPs) for learning both the dynamics and observation models. GPs
provide not only a predictive mean but also confidence intervals that quantify the epistemic
uncertainty due to limited or noisy training data in a principled way (lemma 3.3.1).

GP-ZKF builds on the recursive structure of traditional Kalman filters and set-based
estimation techniques [222, 290]. As shown in fig. 5.2, GP-ZKF performs estimation in three
sequential phases, prediction, measurement, and correction, to maintain a consistent estimate
of the hidden human state.

We represent state estimates using zonotopes, a class of convex polytopes with favorable
properties for set-based estimation. Zonotopes are closed under affine transformations and
Minkowski sums, which makes them particularly well-suited for recursive state estimation
under nonlinear, uncertain models. For more details on zonotopes and their operations, see
section 3.2.3. N

At each time step t = 1,...,T, GP-ZKF computes a zonotopic estimate X; C R"* that
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contains the true hidden state x; with a high probability. This estimate is constructed in
three stages:

1. Prediction: Given the previous control input u;—; € 4 and the previous zonotopic
estimate X;_; C R" that contains the true state z;_;, GP-ZKF uses the learned
dynamics model d(-) (see eq. (5.1)) to construct a dynamics-consistent zonotope X; C
R™. With a high probability, this set contains all possible next states reachable from
X;_1 under the dynamics model and process noise, capturing epistemic and aleatoric
uncertainty.

2. Measurement: Given the new sensor measurement g, € R™ the control input u; € 4,
and the predicted zonotope X;, GP-ZKF uses the learned observation model o(-)
(see eq. (5.2)) to construct a measurement-consistent polytope X,, C R"™. With a
high probability, this set contains all possible states that could have generated the
measurement g, under the observation model and measurement noise. Because this set
may be asymmetric, we use general polytopes rather than zonotopes.

3. Correction: The final estimate )/(\t is obtained by intersecting the prediction and measure-
ment sets X; N X,,. This intersection yields a conservative estimate that is consistent
with both the dynamics and the sensor observations, while still preserving computational
tractability.

We now introduce each of the three phases, prediction, measurement, and correction, in
detail in the following subsections.

5.3.1 Phase 1: Prediction

In the prediction phase, the goal is to anticipate the range of possible future human states
given the previous estimate and control. Specifically, given the previous zonotopic estimate
X;_1 and robot control input u; 1, GP-ZKF constructs a new dynamics-consistent zonotope
X, that bounds the output of the dynamics function d(-) with a high probability. As defined
in eq. (5.1), d(-) comprises three components: (1) a known model f(-) (e.g., physics-based
prior), (2) an unknown residual model ¢(-) learned from data, and (3) additive process noise
w. This section describes how we conservatively bound each component and integrate them
to compute X,

Bounding the Known Dynamics Function

Accurately bounding the output of an arbitrary nonlinear function is difficult in general. We
assume the known function f(-) is smooth and structured enough to allow for principled
linear approximation:

Assumption 5.3.1. The known function f(-) satisfy:

(i) f(:) is twice continuously differentiable, so that we can perform linearization and apply
standard reachability analysis tools.
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(11) f(-) is Ly-Lipschitz continuous with respect to the 2-norm. That is, small changes in
the input lead to proportionally bounded changes in the output.

(iii) The deviation of f(xo,u) from the initial state xo is bounded by a constant B', i.e.,
|| f(wo,u) — x0ll2 < BY, for each initial state o € Xy and each control u € 4. This
ensures that the state does not change too drastically in a single step.

In this section, we use assumption 5.3.1(i) to bound the outputs of f(+); we will incorporate

Assumption 5.3.1(i) allows us to directly apply reachability analysis [224] to bound the
outputs of f(-), for any given u; ; and z; 1 € /ﬁ_l. In particular, we first linearize f(-)
around a reference point 7;_; € R, which is chosen to be the center of /ﬁ_l. The linearized
function f(z; 1,ur1) = f(@_1,u—1) + Jf - (2,1 — Ty_1), where Jf is the Jacobian of f(-)
with respect to z;_1, evaluated at (Z;_1,u¢—1). Given control u;_;, for each state x;_; € A?t_l,
the linearization error can be bounded by a zero-centered box that C R™ (see Althoff [224,

proposition 3.7]). Formally, for each state x;_; € &X;_; and u;_; € 4, we have the following
bound: _ R
J@—r, 1) — f(@i—1,u-1) € Rf(Xt—hut—l) C R™. (5.3)

Here, R’(-) denotes the function used to compute the box that bounds the error based on
X;_1 and u;_q.

Bounding the Learned Residual Dynamics

The unknown function g(-) is learned via GP regression (see section 3.3). In this section, we
formulate a high-probability bound for the output of g(z;_1,u;—1), given u;_1 and z;_; € X},
in the following five steps:

e (i) Regularity assumptions: We begin by stating regularization assumptions about the
target function g(-), which ensure that the learned model behaves well within the
domain of interest.

(ii) Bounding the reachable state space: We show that, with a high probability, the
state remains within a compact space over time.

(iii) Bounding the GP posterior mean: Within this compact space, we derive a bound
for the GP posterior mean function, p?(-).

(iv) Bounding the GP posterior standard deviation: We present a bound for the GP
posterior standard deviation function, o?(-).

(v) Combining bounds: Finally, we integrate both bounds of u9(-) and ¢9(-) into the
GP confidence intervals, as introduced in lemma 3.3.1, to bound the output of g(-).

We now introduce each of the five steps.

(i) Regularity Assumptions:
We denote the kernel for g(-) as k9 and the single-output surrogate function as ¢'(-) (see
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section 3.3). We make the following regularity assumptions for the function g(-) and its GP
kernel k9:

Assumption 5.3.2. The unknown dynamics function g(-) and its GP kernel k9 satisfy:

(i) Smoothness: The kernel k9 is 2-times continuously differentiable. This ensures that
the learned function is smooth enough for reliable linearization. (See Steinwart and

Christmann [291, definition 4.35].)

(ii) Boundedness: The kernel k9 is bounded, meaning its values do not grow without limit
|1k9]| 00 < 00 (See Steinwart and Christmann [291, Eq. (4.15)].)

(#i) Lipschitz continuity of derivatives: The derivatives of the kernel k9 are also bounded,
which ensures the GP posterior mean and variance change smoothly with the input.
(Adapted from Berkenkamp [232, Assumption 4].)

(iv) Function complexity bound: The target function ¢'(-) has a bounded norm in the
reproducing kernel Hilbert space (RKHS) associated with k9: ||¢'||xs < BY. This limits
the complezity of the function learned by GP regression. (See section 3.3 for more

details.)

This assumption states that k9(-,-) and g(-) are smooth and bounded; common smooth
kernels, such as square exponential and rational quadratic kernels, satisfy this assumption.
Assumption 5.3.2 (i,iii,iv) implies that g(-) is L,-Lipschitz continuous with respect to the
2-norm by Berkenkamp [232, corollary 2].

(ii) Bounding the Reachable State Space:

Although the process noise w follows a Gaussian distribution and thus has infinite support,
the robot’s actual state during estimation does not explore all of R™*. Instead, we show that,
with high probability, the system’s state remains within a compact space throughout the
entire horizon. This result is formalized in the lemma below:

process noise w is Gaussian as described in section 5.1. Then, starting from an initial set
Xo 2 xg, there exists a compact box X C R"™, such that, with a probability at least (1 — §v),
jointly for each time step t = 0,...,T, we have that the state v, € X. The size of X depends
on the initial set Xy, the time horizon T', the noise level \*, the failure tolerance 6", and
model properties LY, L9, B, B9, ||k9]|s, and n,.

The proof follows by applying [232, lemma 44|, combined with our bounded noise region

Gaussian noise assumption for w “prevent” f(-), g(-), and w (respectively) from drifting
arbitrarily far away from A} over time.

(iii) Bounding the GP Posterior Mean:
We now derive a bound on the error between the GP posterior mean function u9(-) and its
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linear approximation. At each time step ¢t = 1,...,T', we linearize 1/ around the center of
the current zonotopic estimate X;_1, denoted by Z;_;. The linearized function is:

(i1, u—1) = p2(Tem1, we—r) + JE9 - (2021 — Tyon),

where J4? is the Jacobian of p9 with respect to x,_;, evaluated at 7,_;.

Lemma 5.3.3 implies that the domain of p9(-) during the estimation process is compact,
with high probability. Together with assumption 5.3.2 (i), we obtain that, with a high
probability, for each dimension j = 1,...,n,, the mean ,u? is twice continuously differentiable
with L, -Lipschitz gradient. We then follow the steps in Koller et al. [52, section V(A)2)]
to derive a bound for the linearization error. Formally, with a probability at least (1 — %),
uniformly for each time step t = 1,...,7T, dimension j = 1,...,n,, state x;_; € X, and
control u;_; € 4, the following bound holds:

1
| (z—1s we1) — B (21, up1)| < §ng Nz = Tal3, (5.4)
where the probability (1 — ") is due to the usage of lemma 5.3.3.

(iv) Bounding the GP Posterior Standard Deviation:
We approximate the GP posterior standard deviation o9(x;_1,u; 1) by evaluating it at the
zonotope center T;_;. Using assumption 5.3.2 (i, ii, iii) and results from Lederer, Umlauft,
and Hirche [292, eq (21) and (22)], the error in this approximation can be bounded.

There exists a constant L? € R, determined by the GP kernel and training data, such
that for each time step t = 1,...,T, dimension j =1, ..., n,, state x;_; € R"*, and control
us—1 € U, the following holds:

|0 (-1, 1) — 0 (Teo1, up-1)| < LE - |20m1 — Toma |15 (5.5)

This square-root dependence reflects how the standard deviation function is typically less
sensitive to input changes than the mean, and gives a principled way to approximate
uncertainty across the zonotope.

(v) Combining Bounds:
To bound the total error between the unknown function g¢(-) and the linearized GP posterior
mean 7i¢(-), we combine three sources of uncertainty: (1) the linearization error in the mean
function, (2) the GP confidence interval capturing epistemic uncertainty, and (3) and the
approximation error in the standard deviation.

Using Assumption 5.3.2 (iv), we apply lemma 3.3.1 to construct a high-probability
confidence interval for ¢(-) with a failure probability ¢ € (0,1). For each dimension
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j=1,...,n,, we decompose the total error |g;(z;—1,ur—1) — &} (¥s—1,u;—1)| as follows:

‘gj(xtfla Up1) — ﬁ?(xtflautfl)‘

< W (@1, weer) = 15 (@1, we1) | + |95 (21, wemr) — 15 (@21, we1)| (5.6b)
< %L%M Netrs = T2+ 7 - 02 (e, ) (5.6¢)
= %L%u N =T34+ 87 0@y uin) + LY - [l — T [y (5.6d)
- %ng N Xt — T |3+ B 0 (Tp—1, up—1) + BILY - %=1 — T [l5. (5.6e)

Here, inequality eq. (5.6b) applies the triangle inequality. Inequality eq. (5.6¢) combines the
GP posterior mean’s linearization error bound (eq. (5.4)) and the GP confidence interval
(lemma 3.3.1) via a union bound. In this way, all inequalities starting at eq. (5.6¢) hold with a
probability at least (1 — 9 — §*). Then, inequality eq. (5.6d) replaces the standard deviation
at z,_, with that at Z;_;, introducing an approximation error term based on eq. (5.5). Finally,
inequality eq. (5.6e) bounds the distance ||z¢_1 — ;1|2 over all z;_; € X,_1. In particular, we

define the norm of the translated zonotope || X;_1—7;_1]|2 = max |x¢—1——_1]|2, which

we1€X 1
is the maximum deviation within the zonotope (a standard norm in set-based estimation [293]).
To make this bound explicit in terms of the size of the zonotopic estimate X;_1, we define

¢ = ||X,_1 — T;_1 2. Substituting this into eq. (5.6¢) gives the following:

1
-9 g 2 9 (= 1/2
|gj(17t—17 Utfl) — K (xtfla Ut71)| < ELV“ € + B9 g; (xtflyutfl) + B89 LY e /
W N TV
Linearization error of uj() Epistemic uncertainty € Approx. error of U?(-)

(5.7)
This gives us a high-confidence bound on how much the true value of the unknown function
g;(-) may deviate from its linearized GP posterior mean 7f(-). This bound accounts for
both epistemic uncertainty (model error) and the geometric structure of our zonotopic state
estimates.

We encapsulate this bound in eq. (5.7) across all dimensions in a zero-centered box
Rg(/ﬁ,l, u;—1) C R™ where the radius in each dimension j = 1,...,n, is the right-hand
side of eq. (5.7). Then, with a probability at least (1 — 69 — 0™), jointly for each time step
t =1,...,T, zonotopic estimate é?t_l C X, control u;_; € U, and state x;_; € )?t_l, the
following holds: R

9w, u1) — B (Tp-1, 1) € RI( X1, up-1). (5.8)

This bound plays a critical role in the prediction phase of GP-ZKF, as it captures epistemic
uncertainty in the learned dynamics while maintaining computational tractability through a
simple geometric representation.

The Prediction Phase

We now combine the bounds on the known function f(-), the learned function g(-) (modeled
via a GP), and the process noise w to complete the first phase of GP-ZKF: the prediction
phase.
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We begin by defining a linear approximation of the full dynamics function d(-). This
approximation, denoted d(-), is constructed by summing the linearizations of the known
model f(-) and the GP posterior mean p9(-):

d(@i—1,w—1) = [(@i1,u—1) + 17 (Tp—1, Up—1).

Next, we define an error bounding box Rd(/ﬁ_l, uw;—1) C R™ that captures all possible
deviations between the true dynamics d(-) and the linearized approximation d(z;_1,u;—1),
with a high probability. This box is constructed by taking the Minkowski sum of the individual
error bounds from (1) the known function f(-) (from eq. (5.3)), (2) the learned function
g(+) (from eq. (5.8)), and (3) the process noise w (from remark 5.1.1). As a result, with a
probability at least (1 — 69 — §"), jointly for each time step t = 1,...,T, zonotopic estimate
é?t_l C X, control u;_; € U, and state x;_1 € /ﬁ_l, the following holds:

d(Tp—1, U1, Wi—1) — E(xt—uut—l) € Rd(Xt—l’ Ut-1)
- RE) ® PEn) D W
Linearization err. of () Epistemic @ Lin. err. of p9(-) Aleatoric

@ Approx. err. of o9(-)

(5.9)

Given that d is a linear function, u;_, is known, and z;_, € )?t,l, the range of d(xy_y,u;_1)
is itself a zonotope, obtained by linearly transforming X 1. Then, by Minkowski-summing
this transformed zonotope and R%(X;_1,u;_1), we obtain the dynamics-consistent zonotope,
X,, that bounds all possible outputs of the true dynamics d(z;_1,1;—1,w;—1) with a high
probability. Let D()?t_l,Ut_l) denote the function to compute X,. We summarize this
construction in the following lemma:

Lemma 5.3.4. Let §9 and §* € (0,1). For each GP training data size n € N, let the GP

confidence scaling factor 59 be chosen as in lemma 3.3.1. Given an initial set ‘)?n,O 3 Ty,
then, with a probability at least (1 — 69 — §™), the following holds jointly for each data size
n € N and each time stept =1,...,T':

(i) The state at time t lies within the dynamics-consistent zonotope:
d<xn,t—l> Un,t—1, wmt—l) € Xn,t/\:: D(Xn,t—la un,t—l); .
for each zonotopic estimate X, ;1 C X, state x,, 11 € Xp4—1, and control u, ;1 € 4,
where wy, 1 is the process noise as assumed in section 5.1.

(i1) The state remains in the compact set X: x,; € X, T, € X.

Proof. The noise bound W from remark 5.1.1 and the compactness of state space from
lemma 5.3.3 hold jointly, with a probability at least (1 — §*). Then, by applying a union
bound to combine the above result with the confidence intervals of g(-) from lemma 3.3.1, we
arrive at the bound, Tmt. O

Summary: Given the previous control input w;_; and the previous zonotopic estimate é?t_l
(which contains the true state z;_1), the prediction phase of GP-ZKF computes a dynamics-
consistent zonotope X'; C R™ that captures all possible states at time ¢t under the system
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dynamics. This predicted zonotope accounts for uncertainty from model approximation and
process noise, and is guaranteed to contain the true state x; with a high probability. It forms
the foundation for subsequent correction based on sensor observations.

5.3.2 Phase 2: Measurement

In the measurement phase, GP-ZKF uses the dynamics-consistent zonotope X; from the
previous step and the current control input u; to compute a new set, ?y“ that captures all
possible states consistent with the latest sensor measurement 1;, with a high probability. This
set is referred to as the measurement-consistent polytope [290].

The observation model h(-), which maps states and controls to sensor measurements, is
unknown and learned via GP regression. We denote the single-output surrogate function
by h/(-), and the kernel by k". Similar to assumption 5.3.2 for g(-), we make the following
regularity assumptions for the function h(-) and its GP kernel k":

Assumption 5.3.5. The unknown observation function h(-) and its GP kernel k" satisfy:

(i) Smoothness: The kernel k" is 2-times continuously differentiable. (See Steinwart and
Christmann [291, definition 4.35].)

(ii) Boundedness: The kernel k" is bounded: ||k"| s < oo (See Steinwart and Christmann

(291, Eq. (4.15)].)

(iii) Lipschitz continuity of derivatives: The derivatives of the kernel k™ are also bounded.
(Adapted from Berkenkamp [232, Assumption 4].)

(iv) Function complexity bound: The target function h'(-) has a bounded RKHS norm:
|W/||zn < B". (See section 3.3 for more details.)

We now bound the output of A(-) using the same approach developed for the learned
dynamics component g(+) in section 5.3.1.

(iv) Bounding the GP Posterior Mean:
We linearize the GP posterior mean function z"(-) around the center 7, of X, yielding:

" (24, ur) = p" (T, ) + T4 - (20— Tp),

where J# is the Jacobian of p with respect to x;, evaluated at Z;. Since lemma 5.3.4(ii)
ensures that x; lies within a compact region X with a high probability, this allows us to apply
a bound on the linearization error, similar to eq. (5.4).

(iv) Bounding the GP Posterior Standard Deviation:
Under assumption 5.3.5, we can also bound the error between the actual standard deviation
o"(z¢,us) and its approximation o® (%, u;), similar to eq. (5.5).

(iv) Combining bounds:

Given 6" € (0,1), lemma 3.3.1 allows us to construct confidence intervals for h(-). Via a union
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bound, we obtain that the confidence intervals and noise bound v; € V (see remark 5.1.1)
jointly hold with a probability at least (1 — 6" — §%). Then, similar to RY in eq. (5.8), we
obtain a box, R*(X,u;) C R™, such that with a probability at least (1 — 39 —§%)(1— " —4v),
jointly for each time step t = 1,...,T, dynamics-consistent zonotope X; C X, control u; € 4,
and state z; € X'}, we have that

h(l‘h Ut) — ﬁh($t, U/t) - Rh(?t, U,t). (510)

Here, the product rule, (1 — 69 — §¥)(1 — §" — 6¥), results from the assumption that noises w
and v are assumed independent (see section 5.1).

By expanding 7i" and then combining the noise bound V (remark 5.1.1) with eq. (5.10),
we obtain that with probability at least (1 — §9 — §¥)(1 — 6" — §?), jointly for each time step
t =1,...,T, dynamics-consistent zonotope X; C X, control u, € {, and state x, € X, the
following holds:

ﬁh(xtaut) - O(QJtaUt, Ut) = Mh(fta Ut) + Jﬁh : (CUt - Tt) - h(ﬂft, Ut) — Ut
= ﬁh(It; u) — h(ze, up) — vy

€ RO(X,,uy) = RM(X,, uy) b v . (5.11)

. . f h Aleatoric

Epistemic @@ Lin. err. of p"(+)
@ Approx. err. of a"(-)

where R°(X;,u,) represents the total error in the learned observation model, capturing both
epistemic and aleatoric sources.

Constructing the Measurement-Consistent Polytope

Given the actual sensor measurement vy, = o(zy, ug, v;) € R™ we invert the observation model
to solve for the set of possible state x; that are consistent with this measurement. Since
these states must satisfy the bound in eq. (5.11), we equivalently represent this bound as a
polytope, ?yt C R™ with x; as the variable, defined as follows:

?yt = {It S R" . Ji‘ih Tt — [yt - ,uh(ft,ut) + J;Lh Et] € Ro(yhut)} . (512)

This measurement-consistent polytope fyt contains all the states that align with the

current measurement y; and the learned observation model. We denote the function that
computes this polytope as O™ (X, u;, ), with the superscript inv indicating that O™ is
the “inverse” of our observation model, o(-).
Summary: The measurement phase produces a polytope Tyt C R" which contains all states
at time ¢ that are consistent with both the robot’s sensor readings and the uncertainty-aware
GP observation model. This polytope will be intersected with the predicted zonotope in the
next phase to produce the final state estimate.

5.3.3 Phase 3: Correction

In the correction phase, the goal is to combine predictions from the dynamics model and
evidence from the new sensor measurement to compute a refined estimate of the current state.
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Specifically, we construct a new zonotope /'i’\t that tightly bounds the possible true states at
time ¢, by intersecting: (1) the dynamics-consistent zonotope X, from the dynamics model
(lemma 5.3.4), (2) the measurement-consistent polytope X, derived from the sensor reading
(eq. (5.12)), and (3) the known bounded region X of reachable states.

Note: intersecting with X is necessary because the derivation of the measurement-consistent
polytope X, (see eq. (5.11)) assumes that dynamics-consistent zonotope X; lies entirely
within X. Enforcing this condition ensures the validity of the GP bounds and consistency
guarantees. N

Because this intersection cannot be computed exactly, we compute a zonotope X; that
conservatively outer-approximates it. This intersection defines the most plausible region
where the true state can lie, given both prior predictions and current observations. The
resulting zonotope, A;, will be smaller (less conservative) than either X; or X, alone, because
it incorporates both prediction and measurement information. We formalize this step in the
following lemma:

Lemma 5.3.6. Let 69,0%,6" 6" € (0,1). For each GP training data sizes n9,n" € N,

choose GP confidence scaling factors 324, ﬁgh according to lemma 3.5.1'. Assume that the

initial state is bounded in a known zonotope: Xy > x¢, then, with a probability at least
(1 =69 —6%)(1 — 0" — §Y), jointly for each data size n9,n" € N, time step t = 1,...,T,
zonotopic estimate /'E,l C X, state xy_1 € /?t,l, controls us_1,u; € I, and measurement
ye € R™ the following holds:

d(l't_l,ut_l,wt_l) € (?t ﬂfyt N %) C -)?t, (513)

where d(+) is the true dynamics function including noise, X, = D()/(\t,l, w;—1) is the dynamics-
consistent zonotope (lemma 5.3.4), X,, = O™ (X, us,y;) is the measurement-consistent
polytope (eq. (5.12)), and X, is a zonotope that outer-approximates the intersection.

__ This lemma guarantees that the true human state at time ¢ lies inside the new zonotope
X, with a high probability. Lemma 5.3.6 summarizes the derivations in section 5.3.2; it can
be proved by directly combining lemma 5.3.4 and the bound in eq. (5.11).

We compute Q/V\t to outer-approximate the intersection in eq. (5.13) in the following two
steps: (1) GP-ZKF follows Le et al. [290, proposition 1] to obtain a zonotope denoted by
Z;(Ay), parameterized by the matrix A, such that Z;(A;) D (XN X,,). The parameter A,
is obtained by analytically solving a convex program that minimizes the “size” of Z;(A;) (see
Alamo, Bravo, and Camacho [222, section 6.1]). (2) GP-ZKF follows the same procedures to
construct ./'/V\t D (?t N ?yt N %)

We summarize the correction step with the function: /'?t =L (?/(\,:—1, U1, Us, Yt ), which

takes the previous estimate, controls, and the new sensor measurement as input, and outputs
the updated zonotopic state estimate.
Summary: The correction phase fuses the robot’s prediction (from dynamics) and observation
(from sensors) to update its estimate and uncertainty about the hidden state. By intersecting
dynamics-consistent zonotope and measurement-consistent polytope, and carefully outer-
approximating the resulting set, GP-ZKF produces a reliable and conservative estimate of
the hidden state, accounting for both epistemic and aleatoric uncertainty.

"We omit the subscripts n9, n" for every variable in this lemma for clarity.

78



5.4 Theoretical Guarantees

We present two key theoretical results about the proposed estimator, GP-ZKF. First, we
prove that GP-ZKF provides a formal consistency guarantee: its zonotopic estimates contain
the true system state with a high probability, even under epistemic and aleatoric uncertainty.
Second, we show that under certain relaxations, GP-ZKF reduces exactly to GP-EKF [281],
the standard stochastic estimator using Gaussian Processes within the Extended Kalman
Filter (EKF) framework.

5.4.1 Consistency Guarantee

Theorem 5.4.1 (§-Consistency of GP-ZKF). Given ¢ € (0,1), GP-ZKF selects individual
failure probabilities §9,6", 6%, 8 € (0,1) such that (1 — 69 — §*)(1 — 6" —6¥) > (1 —§). For
each GP training data sizes n9,n" € N, GP-ZKF chooses GP confidence scaling factors
5&,5& according to lemma 3.3.1. Then, GP-ZKF is d-consistent. In other words, with a
probability at least 1 — 0, jointly for each time step t = 1,..., T, the true state x; always lies
within the zonotopic estimate X;.

Proof. This is followed by recursively applying lemma 5.3.6 for each time stept =1,...,T,
similar to the argument in Koller et al. [52, Corollary 7]. O

5.4.2 Connection to GP-EKF

GP-EKF [281] is a stochastic state estimator that uses GPs to learn both the dynamics and
observation models. We see GP-EKF' as the stochastic counterpart to our set-based GP-ZKF.
At every time t = 1,...,T, GP-EKF updates its Gaussian belief about the hidden state by
first computing a Kalman gain K; € R"**™  and then outputing a point estimate p; € R
and a covariance matrix ¥; € R"**" (see Ko and Fox [281, table 2|).

To connect GP-ZKF with GP-EKF, similar to Combastel [287, theorem 7|, we interpret
the set-based elements of GP-ZKF analogously:

o GP-ZKF’s point estimate analog is the center of the zonotope, denoted by (P/C'\t)c

e GP-ZKF’s covariance matrix analog is defined as the outer product of its generator

. o N\T
matrix: (X})g ((Xt)g) , which is called the zonotope covariation (|287, definition 4]).

e GP-ZKF’s Kalman gain analog is the matrix A;, which parametrizes the outer approxi-
mation of the intersection X; N X,,, as mentioned at the end of section 5.3.3.

The following theorem states that if we remove the uncertainty-handling mechanisms from
GP-ZKF, it behaves identically to (the Joseph form of) GP-EKF:

Theorem 5.4.2 (Equivalence to GP-EKF). Assume that the zonotopic estimates produced by
GP-ZKF always remain entirely within the known reachable state space X, i.e., for each time
stept =1,...,T, the zonotope Z;(N\y) C X, where Z,(A\;) is defined at the end of section 5.5.3.
Suppose that GP-ZKF s initialized with the same point estimate and covariance as GP-EKF:

1o = (Xo)e and Sy = (Xo) ((P?O)G>T. If GP-ZKF:
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e Sets the confidence interval scalings 39 = 3" = 1.
e Omits all noise bounds for w and v by setting W =0 and V = (.

e Omits all linearization errors for f(-), pf(-), a9(-), u(+), and o"(-) by setting R/ () = 0
(eq. (5.3)), LL, =0 (eq. (54)), L =0 (eq. (5.5)), Ly, = 0 (section 5.3.2), and L% =0
(section 5.3.2);

then, for each time step t = 1,...,T, the estimates from GP-ZKF exactly match those from
N R ONT
GP-EKF: K, = Ay, iy = (X))o, and S, = (X)) ((Xt)g)

Proof. Under the relaxations above, eq. (5.13) becomes (X; N X, NX) C Z,(Ay) = X,. And
each of the uncertainty bounds, R%(+) (eq. (5.9)) and R°(-) (eq. (5.11)), only contains one
standard deviation. As introduced at the end of section 5.3.3, GP-ZKF obtains X;(A;) by

optimizing A;. With the analytical solution, A;, we reach the final conclusion by induction
(see the proof of Combastel [287, theorem 7]). O

This theorem states that with certain relaxations, GP-ZKF could produce the same
Kalman gain, point estimate, and covariance as GP-EKF. The Kalman gain in GP-ZKF, A,
weighs the dynamics-consistent zonotope, X, and the measurement-consistent polytope, ?yt,
when “mixing” them within the outer-approximated intersection. In contrast to GP-EKF,
theorem 5.4.2 signifies the conservativeness of GP-ZKF in bounding the linearization errors
and aleatoric and epistemic uncertainties during estimation. The conservativeness echoes
GP-ZKF’s consistency guarantee, as stated in theorem 5.4.1.

In summary, theorem 5.4.1 provides a formal guarantee that GP-ZKF’s estimates are
reliable. Theorem 5.4.2 shows that GP-ZKF is a strict superset of GP-EKF, matching it under
idealized assumptions. These results highlight the strength of GP-ZKF': it maintains the
structure of a Kalman-like estimator while offering robust guarantees under both epistemic
and aleatoric uncertainties.

5.5 Experiment and Results

In the previous section, we established the theoretical guarantees of GP-ZKF': its probabilistic
consistency and its connection to the standard GP-EKF estimator [281]. In this section, we
provide empirical evidence demonstrating GP-ZKF’s advantages in terms of consistency and
robustness.

We compare GP-ZKF against three widely used stochastic state estimators that also
leverage GP regression to learn both dynamics and observation models: GP-EKF (Extended
Kalman Filter), GP-UKF (Unscented Kalman Filter), and GP-PF (Particle Filter), as
introduced in Ko and Fox [281].

We evaluate all methods in two settings: (1) A simulated inverted pendulum task with high
epistemic uncertainty (i.e., inaccurate learned models), and (2) A real-world robot-assisted
dressing task, where the robot estimates the human arm’s position using force sensors.

We assess each method using the following four metrics:
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1. Average RMSE (Root-Mean-Square Error) (per dimension): Measures the accuracy of
the point estimate. For GP-ZKF, the point estimate is defined as the center of the
zonotopic estimate (X;). (see section 5.4).

2. Inclusion Rate (%): Measures consistency by computing the percentage of time steps
where the true state lies within the estimated set. For GP-ZKF, this is the zonotopic
estimate. For the stochastic methods (GP-EKF, GP-UKF, GP-PF), we convert their
covariance matrix into equivalent 95 % confidence ellipsoids. For GP-PF, the posterior
is approximated as a Gaussian before constructing the ellipsoid.

Recall that theorem 5.4.2 shows that GP-ZKF’s zonotope is theoretically equivalent to
the unscaled covariance-based estimate in GP-EKF. However, in practice, the covariance
matrices from GP-EKF, GP-UKF, and GP-PF are scaled up to form 95 % ellipsoids, in
order to match the consistency guarantee of GP-ZKF’s set-based estimate. This allows
a fair, apples-to-apples comparison of inclusion rates across methods.

3. Average Radius (per dimension): Measures the conservativeness of the estimate by
computing the radius of the smallest axis-aligned box that contains the set-based
estimate.

4. Average Computation Time (per time step): Evaluates the computational cost of each
method.

5.5.1 Simulated Pendulum Domain

Experiment Design

We first evaluated GP-ZKF in a controlled simulated environment using a discrete-time
2D inverted pendulum. The pendulum is stabilized by an infinite-horizon linear quadratic
regulator, with the goal of keeping the pendulum upright. The state is defined as = = [6, Q]T,
where 6 is the angle and 0 is the angular velocity. The set-point corresponds to the pendulum
standing upright (6 = 0°). The closed-loop dynamics of the pendulum are denoted by d(-),
with additive process noise w (standard deviation A, = 7.16°). The robot perceives the state
through an observation function o(-), which maps the state and control to the end-effector’s
position and velocity in R?, with additive observation noise v (A, = 8.88°). The known
dynamics model f(-) corresponds to the linearized and discretized dynamics around the
upright set-point.

To evaluate consistency under significant model errors, we introduced distribution shifts
between training and test conditions. At test time, each method was run for 7' = 15 time
steps, starting from four initial angles 6y sampled uniformly from the testing region [, 27|,
with angular velocity fixed at 0y = 0. BEach start state was repeated for 10 trials. We varied
the training data for the learned models to create four different scenarios:

1. Shift Both: Both the dynamics model g(-) and the observation model h(-) were trained
using a default dataset consisting of 9 rollouts with start states in the training region:
0o € [0, 7] and fo = 0. Since none of the training data covers the test region, both
models face significant distribution shift and thus high epistemic uncertainty.
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Figure 5.3: Zonotopic estimates along a trajectory produced by GP-ZKF under the Shift
None condition (see section 5.5.1). Each zonotopic estimate, X; (green fill), always outer-
approximates the intersection of the dynamics-consistent zonotope, X, (yellow fill), and the
measurement-consistent polytope, X,, (blue outline). Even when the point estimate (green

dot), defined as the center of A}, is inaccurate, the full zonotope still contains the true state
(black dot), demonstrating the consistency of GP-ZKF. While the size of X'; may increase
over time due to uncertainty propagation, the correction step with informative measurements

allows the estimate X; to shrink, improving precision.

2. Shift Dynamics Only: The observation model h(-) was trained with both the default
dataset and an additional supervised dataset containing 16 state-measurement pairs with
states uniformly sampled from the test region |7, 27| x [-37,0]. The dynamics model
g(+) was trained only on the default dataset. This setup reduces epistemic uncertainty
for the observation model but leaves the dynamics model exposed to distribution shift.

3. Shift Observation Only: The dynamics model g(-) was trained with both the default
dataset and five additional rollouts starting from the test region ((90 € [m, 27, 0o = O>.

The observation model A(-) was trained only on the default dataset. This setup reduces
epistemic uncertainty for the dynamics model but leaves the observation model exposed

to a distribution shift.

4. Shift None: Both models were trained on the default dataset and their respective
additional datasets. As both the dynamics and observation models have training data
that covers the test region, neither is exposed to significant epistemic uncertainty:.

In all settings, the GP confidence scaling factors 39 and 3" were manually specified and
adjusted based on the amount of available data: they were scaled up when more data was
available, reflecting their dependence on the GP’s information capacity [52].
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Table 5.1: State estimation results in the Simulated Pendulum Domain. Each row reports
the performance of a different method under one of four data shift conditions: both models,
dynamics only, observation only, and none. GP-ZKF consistently achieves the highest inclusion
rates, indicating strong estimation consistency, while maintaining competitive accuracy and
low computation time.

Data Shift Method  Avg. RMSE (6, 9) Inclusion Rate Avg. Radius (6, 9) Avg. Computation Time
(°, °/sec) (%) (°, °/sec) (sec)
Both models GP-EKF 20.2, 37.5 5 1.7,9.2 0.003
GP-UKF 7.4,15.6 38 10.0, 32.1 0.009
GP-PF 90.5, 64.4 28 27.0, 54.6 1.459
GP-ZKF 16.4, 20.4 83 46.7, 131.4 0.004
Dynamics only GP-EKF 15.3, 22.1 0.17 0.2,04 0.003
GP-UKF 2.2,10.8 27 1.6, 17.8 0.009
GP-PF 69.6, 46.9 16 11.8, 25.5 1.500
GP-ZKF 16.4, 21.5 88 44.6, 72.5 0.004
Observation only GP-EKF 15.6, 21.7 4 1.4, 2.0 0.003
GP-UKF 25.4, 31.2 27 35.9, 40.6 0.009
GP-PF 222.7, 1574 18 82.9, 100.2 1.544
GP-ZKF 15.3, 18.6 87 47.9, 126.0 0.004
None GP-EKF 15.4, 20.4 0.00 0.2,04 0.003
GP-UKF 22,78 18 1.5, 5.1 0.009
GP-PF 161.3, 126.7 10 47.0, 47.8 1.573
GP-ZKF 16.6, 19.7 92 47.1, 72.8 0.004
Results

Figure 5.3 illustrates how the zonotopic estimates from GP-ZKF evolve over time in the
Shift None condition. Each green zonotope, X}, reliably contains the true state, highlighting
the estimator’s consistency. The figure also shows how the zonotope volumes grow during
open-loop dynamics propagation and shrink when informative measurements are incorporated,
demonstrating the adaptive nature of the estimator.

Table 5.1 provides the quantitative results across different training and test distribution
shift conditions. GP-EKF, which relies on linearization, suffered from poor performance due
to the system’s nonlinearity, yielding low inclusion rates and overly confident (small-radius)
estimates. GP-UKF, which avoids linearization, performed better in both accuracy and
consistency, but its estimates were still less reliable than GP-ZKF. GP-PF exhibited large
RMSEs and only moderate inclusion, possibly due to the narrow variance of GP posteriors
and particle impoverishment.

In contrast, GP-ZKF consistently achieved the highest inclusion rates across all conditions.
These results empirically support its theoretical consistency guarantee (theorem 5.4.1).
While GP-ZKF estimates are more conservative, resulting in larger average radii, this
conservativeness appropriately reflects both epistemic and aleatoric uncertainty in the models.

Admittedly, GP-ZKF is more conservative than the others, resulting in larger radii. We
argue that GP-ZKF’s conservativeness actually scales appropriately with the domain, as we
will next demonstrate its low conservativeness in the dressing domain.
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Figure 5.4: Keyframes of the robot-assisted dressing task (cloth omitted for clarity). The
simulated robot and human motions are reconstructed from real-world data (fig. 5.1), as
described in section 5.5.2. Each keyframe visualizes several ground-truth human arm poses,
along with their corresponding zonotopic estimates of the elbow position. For visualization,
each 3D zonotope produced by GP-ZKF is outer-approximated by an axis-aligned bounding
box, shown as a green box.

5.5.2 Robot-Assisted Dressing Domain

Experiment Design

We evaluated GP-ZKF in a robot-assisted dressing task, where a robot arm dresses a long-
sleeved jacket onto a human arm (fig. 5.1). The goal is to estimate the human elbow position,
which is visually occluded by the garment [276]. All methods were evaluated offline using
data collected from real-world human-robot interactions.

During data collection, the human moved their arm naturally. An Xsens motion capture
system, unaffected by visual occlusion, tracked the human arm configuration. The robot
executed a predefined dressing controller to move from the human hand to the elbow, and
then to the shoulder. The robot was position-controlled using KUKA’s impedance mode,
providing some compliance during the interaction.

The dataset includes three initial arm configurations: bend, lower, and straight, with 17,
11, and 12 trajectories, respectively.

The state € R? is defined as the 3D position of the human elbow. The control input
u € R? includes the 3D positions of the human hand and shoulder, as well as the robot end
effector. The known dynamics model is simply f(z,u) = x. The noise variances for w and v
are automatically identified during GP training.

In our setup, the shoulder region of the garment is rigidly attached to the robot gripper.
During dressing, the circular opening at the shoulder of the garment gradually slides along
the human arm toward the human shoulder. At any given moment, this shoulder opening
encloses a specific segment of the human arm. The 3D center position of this opening is
informative about which part of the arm is currently inside the garment, making it a valuable
signal for tracking dressing progress. We define this center position of the shoulder opening
as the measurement y € R3.
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Table 5.2: State estimation results in the Robot-Assisted Dressing Domain. Each row shows
the performance of a different method under one of three initial arm poses: bend, lower, or
straight. GP-ZKF consistently achieves high inclusion rates, relatively small set estimates
(Avg. Radius), competitive accuracy (Avg. RMSE), and low runtime (Avg. Computation
Time), demonstrating its effectiveness in maintaining consistency, precision, accuracy, and
computational efficiency.

Arm Pose  Method  Avg. RMSE (6,6) Inclusion Rate Avg. Radius (6,0) Avg. Computation Time

(cm,cm,em) (%) (cm,cm,cm) (sec)

Bend  GP-EKF 3.9, 3.3, 38 83 11, 19, 23 0.25
GP-UKF 9.8, 3.0, 6.1 76 26, 10, 15 1.68

GP-PF 9.4, 2.6, 3.0 73 6,6,7 29.93

GP-ZKF 28 34,43 88 8 8,8 0.25

Lower  GP-EKF 5.2, 3.0, 6.9 94 24, 19, 22 0.11
GP-UKF 9.2, 12.4, 13.6 80 97, 22, 33 0.71

GP-PF 5.0, 2.7, 4.1 70 11, 8, 11 12.74

GP-ZKF 46,27, 4.7 97 12, 10, 12 0.11

Straight ~ GP-EKF 2.0, 3.0, 3.9 88 14, 15, 14 0.12
GP-UKF 34, 3.8, 3.6 64 7,7,9 0.78

GP-PF 2.5, 3.0, 2.8 62 6, 6, 6 13.95

GP-ZKF 17,28, 4.1 92 8,8, 8 0.12

To estimate the shoulder opening’s position, we use a 3D force signal 2, excluding torques,
measured by an ATT force-torque sensor mounted at the robot’s wrist. We apply a low-pass
filter to the raw force signal and then transform it into an approximate shoulder opening
position using a tether-inspired parametric model [294]. This model interprets the measured
force as the tension in a virtual elastic tether connecting the shoulder opening (rigidly held by
the robot) to the segment of the human arm currently enclosed by it. A large force suggests
that the garment is being pulled tightly, meaning the arm segment is lagging behind the
shoulder opening. Conversely, a small force implies the garment is loosely following the arm.
Thus, the force gives indirect but informative clues about the location of the arm segment
enclosed by the shoulder opening. We use this inferred shoulder opening center position as
the measurement input to our estimator.

Results

Figure 5.4 illustrates representative keyframes from the dressing task, showing the zonotopic
estimates produced by GP-ZKF. Each green box visualizes the outer-approximated 3D
zonotope of the estimated elbow position at a specific time step. These boxes adapt in size
depending on the underlying uncertainty, expanding when observations are ambiguous and

2Notably, we did not subtract the robot’s commanded forces from the measured signals. This is because
the robot moved slowly and the garment was lightweight, so in free motion (without human contact), the
measured force was near zero. As a result, any nonzero force measured during dressing can be attributed to
physical interaction between the garment and the human arm. In contrast, if the robot moved rapidly or the
garment was heavier, inertial forces would need to be accounted for. In our setting, however, such correction
was unnecessary.
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shrinking when measurements provide clear information. Across the sequence, the green
boxes consistently contain the ground-truth elbow positions, demonstrating GP-ZKF’s ability
to maintain accurate and consistent estimates throughout the dressing motion.

Quantitative results across all dressing conditions are presented in table 5.2. GP-ZKF
consistently achieved the highest inclusion rates across all three conditions, indicating strong
estimation consistency. Notably, its average set size (radius) was significantly smaller than
GP-EKF and GP-UKF, demonstrating that GP-ZKF is not overly conservative despite
maintaining consistency guarantees.

While GP-EKF and GP-UKF also achieved relatively high inclusion rates, they did so
with much larger radius estimates. GP-PF produced smaller radii but at the cost of lower
inclusion and significantly longer computation times. GP-ZKF offers a strong balance: it
maintains reliable state estimates (consistency) while avoiding excessive conservativeness and
remaining computationally efficient.

5.6 Conclusion

This chapter addressed the challenge of estimating a human’s physical state when the robot
is uncertain about its own learned models. We proposed GP-ZKF, a set-based estimation
method that explicitly represents and respects epistemic uncertainty (due to scarce and
noisy data) and aleatoric uncertainty (due to process and sensor noise). GP-ZKF combines
Gaussian process learning with zonotope-based filtering to produce consistent state estimates,
i.e., the true state remains inside the estimated set with high probability.

Our theoretical results showed that GP-ZKF is provably consistent and that, under relaxed
assumptions, it reduces to a stochastic estimator (GP-EKF). Empirically, we validated our
approach in two domains: a simulated inverted pendulum and a real-world robot-assisted
dressing task. GP-ZKF outperformed standard GP-EKF, GP-UKF, and GP-PF methods in
terms of consistency and robustness, without excessive conservativeness.

In the broader scope of this thesis, GP-ZKF contributes to answering the central question:
how should a robot behave when it is uncertain about the human? Our answer in this chapter
is: the robot should behave cautiously by estimating the human’s physical state using
uncertainty-aware methods that avoid overconfidence. This strategy forms a foundation for
reliable human-robot interaction, especially when downstream robot actions depend critically
on the estimated human state.
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Chapter 6

Acting Safely under Uncertainty by
Allowing Contact

“A ship in harbor is safe, but that is not what ships are built for.”

—John A. Shedd

When robots physically assist humans, safety is a top priority, but overly cautious behavior
can severely limit their usefulness. A key challenge is enabling robots to act to complete tasks
efficiently while still ensuring human safety, especially when the robot is uncertain about how
the human may move [177, 295|. This chapter addresses the central thesis question, how should
a robot behave when it is uncertain about the human?, in the context of real-time physical
interaction. I propose a new safety framework that allows the robot to act under uncertainty
by relaxing traditional collision-avoidance constraints to permit low-impact contact.

In the broader context of this thesis, this chapter contributes to the answer of
how robots should behave when uncertain about human behavior: by relaxing
strict safety constraints to permit low-impact contact, robots can continue acting
decisively without compromising safety.

In physical human-robot interaction, many existing safe motion generation approaches fall
into two categories: predictive methods and reactive methods [296]. Predictive approaches
allow a robot to anticipate human behavior while simultaneously planning collision-free
motion [50]. Through anticipation, such approaches enable the robot to safely and effectively
collaborate with humans [56, 130, 297, 298|, but such safety and effectiveness heavily rely on
high-quality predictive models of human behavior. By contrast, reactive approaches forgo
modeling human behavior, but instead enable a robot to detect collisions in real time [50, 299,
300] and react compliantly to human behavior by ensuring reduced contact forces [301, 302].

Many prior works in safe physical human-robot interaction have integrated these two
approaches sequentially [50, 296], with a robot first employing motion planners to find paths
and then using compliant controllers for execution. However, each approach separately
optimizes behavior for its own particular goal (collision avoidance for planners and contact
force reduction for compliant controllers) rather than a goal jointly held by both approaches,
ultimately exposing the weaknesses of each. First, most planners don’t incorporate the fact
that a compliant controller is employed to reduce contact forces in the event of a collision.
As a result, planners tend to be very conservative, attempting to avoid collisions entirely.
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Figure 6.1: During robot-assisted dressing, the robot must remain physically close to the
human arm to ensure human comfort due to the limited size of the armhole. Robot motion
planners optimizing for human safety, defined as collision avoidance, might cause the robot
to freeze under uncertainty, stalling progress. This chapter redefines safety to allow either
collision avoidance or low-impact contact, enabling the robot to complete the task efficiently
without compromising safety.

Conservative behavior can ensure safety, but could also worsen task performance or even
unnecessarily freeze the robot in place [49]. Robot respecting its uncertainties about the future
human behavior by avoiding regions potentially reachable by the human is necessary to ensure
safety in many cases [155, 161, 297|, but would exacerbate this issue of over-conservativeness.
Consider the case of robot-assisted dressing shown in fig. 6.1: avoiding the (uncertain) human
arm during task execution is nearly impossible, preventing a safe planner from making
progress. Second, compliant controllers are usually unaware of the robot’s high-level plans,
making it challenging to adapt stiffness profiles in order to properly balance safety and task
performance.

This chapter proposes a safe planner for integrating predictive and reactive approaches
jointly within a framework, in order to reduce system conservativeness while maintaining
safety. Human physical safety in predictive and reactive approaches were previously defined
as collision avoidance [303-305] and contact force reduction [301, 302|, respectively. By
incorporating both definitions, I redefine safety in the context of human-aware motion
planning. My new definition is two-pronged: collision avoidance or safe impact in the event
of a collision [51]. This two-pronged definition captures the strengths of both predictive and
reactive methods and enables the robot to act even when uncertainty is high. I formalize this
concept within a learning-based Model Predictive Control (MPC) framework [52|, which learns
a model of human motion online, maintains uncertainty estimates, and plans safe actions
accordingly. This integration inherits the theoretical safety guarantees of the underlying
MPC algorithm, ensuring that the robot satisfies the two-pronged safety definition with high
probability, even under uncertainty about future human behavior.

This safety-aware planner is evaluated both in simulation and in a real-world dressing
task. Empirical results show that compared to standard MPC with collision-avoidance-only
safety, the two-pronged safety constraint achieves significantly faster task completion, while
maintaining safety guarantees.

In this chapter, I make two contributions:
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e [ redefine human physical safety for interactive manipulation as a two-pronged constraint:
either avoid contact or ensure low-impact contact.

e [ integrate this definition into a learning-based MPC algorithm that guarantees safety
under uncertainty with high probability.

Section 6.1 formulates the motion planning problem under uncertainty. Section 6.2 presents
the new safety definition. Section 6.3 introduces the learning-based MPC framework [52].
Section 6.4 describes how safety is encoded as a constraint in the MPC. Sections 6.5 and 6.6
report empirical results in simulation and physical robot experiments.

6.1 Problem Definition

In this chapter, we ignore the human and robot kinematics by making the following assumption:

Assumption 6.1.1. The robot and human are represented as point masses in Cartesian
space.

A broad range of tasks can be modeled by this representation, including handover and
space-sharing tasks [55, 306], where only the robot end-effector and human hand are modeled.
As depicted in section 6.5.2, this representation enables a robot to dress a human arm (under
certain task simplifications).

To reason about collision avoidance and safe impact, the human-robot system’s state
is designed to contain both the human and robot positions and velocities. Formally, let
pft € R3, vft ¢ R3, u € R%, and m® € R denote the robot’s position, velocity, control,
and mass, respectively. Similarly, let p? € R3, v € R?, and m’ € R denote the human

position, velocity, and mass, respectively. A human-robot (joint) state is defined as the tuple

(pH, v, pft vf).

6.1.1 Human Behavior

Before interacting with the human, the robot does not know how the human would move
during interaction. Instead, the robot will interact with the human, collect data about the
human movement, train a human dynamics model, and use that model to plan a safe robot
trajectory. This chapter takes a “black-box approach” [13| to model the human movement as
a first-order, deterministic !, and discrete-time dynamical system, formulated as follows:

v ="l o) =" + gl pf), (6.1)
1 1
vfl, = E(pfil —p) = - g, pl), (6.2)

!'Note that the system assumes that the human behavior is deterministic, which seems unrealistic. In fact,
it is not hard to extend this chapter to stochastic human dynamics if the robot is assumed to still have access
to a safe recovery controller, as introduced later in section 6.1.3 (This point is also mentioned by Koller et al.
[52, Footnote 2]).

89



where the potentially nonlinear functions f and g are unknown. The human velocity, v,
in eq. (6.2), is approximated as the rate of change of position, where h is a specified
hyperparameter indicating the duration of a time-step. The initial condition, v, is assumed
to be given by measurements, as it cannot be computed by eq. (6.2). This human dynamical
system formulated above can be used to approximate low-level human movements in human-
robot interactive tasks, such as reaching toward a goal [155, 307|, which are usually embedded

in complicated human behaviors as primitives.

6.1.2 Robot Dynamics

The robot dynamics is modeled as a known, deterministic, discrete-time system:

(pﬁi-lv Utlil) = fR(pﬁ7 Uﬁ? ut-i—l)' (63)

A robot controller 7 is defined as a function: u;; = 7(pH, v, pE vF). Let f, be a function

describing the closed-loop human-robot system induced by the controller 7. Then, combining
the robot dynamics f%, the human dynamics f¥ and g (defined in eqgs. (6.1) and (6.2)), and

the robot controller 7 yields the closed-loop system (p/ 1, v/, pit 1, vf) = f=(pf, vf, pf, of).

6.1.3 Safe Recovery Controller

To ensure human safety, it is important for the robot to leverage its control authority
to keep the human-robot state within the safe set. We denote the safe set by & =
{(pH ;o pR of): human is safe}, which will be formally defined later in eq. (6.7). The
key challenge is that the robot does not know the human movement in advance, and has to
rely on the human model learned from data. The noise and scarcity in the data would lead
to errors in such learned models, which would potentially lead to the robot’s unsafe actions.
To mitigate this, we grant the robot a safe recovery controller, denoted by m.q, that can
always keep the human safe. There are various ways of implementing such a controller. In
this chapter, I implement 7.4 as a robot emergency stop. Intuitively, if the robot chooses to
run it, then the human is assumed to always remain safe. However, note that this controller
will not contribute to making progress in any interaction tasks, but only keep the human safe.
So it is the robot’s algorithm’s job to decide when to trigger this controller, as described later
in section 6.3.

Given a recovery controller 7,..q, we define the corresponding recovery set as the set of the
human-robot states where executing 7,..q will keep the human safe. Given my implementation
of m.eq as an emergency stop, the recovery set is then defined as

Sred = {(pH,UH,pR,UR) eS: vl = 0} =8N {(pH,vH,pR,vR): vf = O}.
Accordingly, the assumption regarding m.q can be state formally as follows:

Assumption 6.1.2. The system is given g with Syeq, such that:

Vr=1,2,...: Y(pH, o pf ol € Spod = VE> 7 (0 pE ) €S,

where YVt > 7: (pfy, v pla, viy) = fr 0 0 pl o) and fr.., denote the corresponding

closed-loop system under T eq.
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This assumption states that if the human-robot state is initially within S,.q, then if the
robot starts to execute m,q, the human-robot state will always remain within the safe set S.
Intuitively, when v = 0 and the human is safe, if the robot activates the emergency stop
Tred, then immediately from now on, the human will remain safe and never injure themselves.

6.1.4 Problem Statement

This chapter’s goal is to design a robot controller to complete some interaction task, specified
by a given objective function, while ensuring human physical safety throughout the operation
time. However, since the robot’s model of the human, learned from data, is almost never
perfect, it is generally impossible for the robot controller to guarantee that the human-robot
state always stays within the safe set [52]. Instead, we slightly relax this goal to safety with a
high probability (or d-safety), which is formally defined as follows:

Definition 6.1.3 (0-safety (definition 3 in Koller et al. [52])). Let ® be a robot controller
with the closed-loop system denoted by fr. Given § € (0,1) and that the initial state

(pl vl pR vl) € 8,4, the system is §-safe under m iff

Pvt=0,1,...: (p/ v/ pfvf) €S| >1—4,
where Yt € N: (pf o pE o) = fo(pf 0l pE ol )).

Intuitively, d-safety indicates that with a high probability, the human will remain safe,
given that the human-robot system is initially within the recovery set S,eq. Note that d-safety
is defined jointly throughout the operating time, rather than per time step [52|. Additionally,
the definition does not involve any terminal time, implying that d-safety is independent of
the duration of operation [52].

Now we state the problem for this chapter:

Problem Statement. Design a controller, m, to complete a given interaction task while
guaranteeing 0-safety.

6.2 Human Safety as Collision Avoidance or Safe Impact

In this section, we will expand our definition of safe set S introduced in section 6.1.3 to
encode the concept of collision avoidance or safe impact.

Lasota, Fong, Shah, et al. [51] defined safety as (1) collision avoidance whenever possible,
and (2) safe impact when collisions are required or unavoidable. We see collision avoidance
and safe impact as two approaches to ensuring safety; integrating these approaches allows
robot planners greater freedom to find less conservative and more efficient solutions without
sacrificing safety. Hence, we define safety as collision avoidance or safe impact.

Next, we will first formulate collision avoidance and then safe impact. Finally, we will
combine both formulations to formally define the safe set S.
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6.2.1 Collision Avoidance

Given a fixed human position p, we define the Collision Avoidance (CA) set as Sca(p”) =
{(",v"): ||p® — p"||> > €}, with ||p" — p||; referring to the Euclidean distance between p®
and p™ and € > 0 denotes a specified distance threshold. Intuitively, ensuring that the robot
state stays within the Collision Avoidance set would encourage the robot position to be far
from the human to avoid potential collisions.

6.2.2 Safe Impact

Heinzmann and Zelinsky [308] formulated a constraint on a robot’s position and velocity to
ensure safe human-robot impact during collisions, while assuming that the human remains
static. In this section, we adapt that constraint to the case in which the human is moving.
Given the point-mass assumption (assumption 6.1.1) for both human and robot, the safe
impact constraint would depend on the human’s and robot’s velocities.

We consider the case in which two general bodies collide. By assuming that the collision
occurs within an infinitesimally small period of time At — 0, we can treat both bodies during
impact as rigid bodies (according to Wittenburg [309, CH 6.1]). With a slight abuse of
notation, let p, v, pf, and v® denote the human’s position, velocity, robot’s position, and
velocity immediately before a collision, respectively. Let Av? and Av® denote the changes
to v and v® immediately following the collision, respectively. As At — 0, during At, both
pf and p® don’t change, while v and v” remain finite. By Wittenburg [309, CH 6.1], the
impulse, defined by F = limay 0 ftHAt F(s)ds, remains finite, where F' is the impulsive force
that tends toward infinity as At — 0.

According to Walker [310, eq. (8)] or Wittenburg [309, eq. (6.9)], we have the following

kinematic relationship:
(W7 + AT — (v + AvT)]"'n = —e(v —0vf)Tn (6.4)

where n is the unit normal vector to the common tangent plane at the point of collision [309).
The parameter e € [0, 1] denotes the coefficient of restitution. The value of e is 0 for purely
plastic collisions and 1 for purely elastic collisions [310].

Under our representation where both bodies are point masses (assumption 6.1.1), by
following Walker [310, sec. II(B)], we obtain that Av? = —F/m# and AvR = F/m~. Here,
we follow the convention that F' is the force exerted by the human and applied to the robot.
By plugging both expressions into eq. (6.4), we get the following:

—(e+D(EH" = @H")n

mag _
F - 1 + _1
mE oy 2

(6.5)

where F™9 denotes the magnitude of F, i.e., F' = F™9n. In fact, eq. (6.5) is equivalent to
Wittenburg [309, eq. (6.16)] when applied to point masses.

We further adopt the assumption made by Heinzmann and Zelinsky [308] that at the
moment of contact, there is sufficient friction to align F and (v —ov). Given this assumption,

we have n = — (vt — o) / ||[vft — vH||,. By plugging this expression into eq. (6.5), we arrive
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at the following:

Fmaeg — = Qv ) (6.6)

where 15 ma9 is the eﬁective impact force magnitude [308] and we refer to this function using
a new notation Q(vf vft).

Now we define impact potential as the maximum impact force that a robot can create in a
collision with a human [308]. It is a scalar value that provides an upper limit for any impact
between the robot and human. According to Heinzmann and Zelinsky [308, eq. (11)], impact
potential is computed as the maximum effective impact force among all points of collision on
the surfaces of the robot and human. Given our point-mass assumption, there is only one
possible point of collision. Hence, our impact potential is equivalent to Femag.

Given a fixed human velocity v, we define the Safe Impact (SI) set as Ssi(vf) =
{(",v"): Qv v") < Qpax }, where Q computes the impact potential between the human
and the robot, as defined in eq. (6.6), and .« denotes the specified maximum impact
potential considered to be safe. Intuitively, ensuring that the robot state stays within the
safe impact set would encourage the robot velocity to be similar to the human velocity, so
even when they collide, the impact will be low.

6.2.3 Safe Set Defined as Collision Safe or Safe Impact

So far, given a human position p, we have defined the collision avoidance set, Sca(p™).
Given a human velocity v, we have defined the safe impact set, Ss;(v?). According to my
safety definition, the human is safe if the system either remains collision-free or ensures safe
impact during collisions. Accordingly, we define “safety” as follows:

(p™,0") € Sca(p™) U [SCA ﬂ Ssi(v ] = Scalp™) U Ssr(v'),

where the superscript ¢ denotes the set complement operator. The N emphasizes that safe
impact is used only in the event of a collision. This above equality implies that “CA or (SI
during collision)” is equivalent to “CA or SI.” Hence, we formally define the safe set S as
follows:

S = {(", ", p" ") (p,0") € Scalp™) U Sa(v™)}. (6.7)

6.3 Model Predictive Control Algorithm

We design the robot controller by adopting the learning based Model Predictive Control
(MPC) algorithm from Koller et al. [52, Algorithm 1]. This MPC algorithm iteratively solves
a trajectory optimization in a receding horizon fashion, and uses the recovery controller, 7.cq
(defined in section 6.1.3) in case the trajectory optimization cannot find feasible solutions.
The pseudo-code is presented in algorithm 2. In particular, at each time step t = 1,2,...,
if the trajectory optimization finds a feasible finite-length trajectory, denoted by II; =
{ut1, ..., urr}, then the robot will execute the first control, u; ;. In the next time step, ¢t + 1,
if no feasible solutions can be found, the algorithm will reuse the trajectory from the previous
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time step t, denoted by II;, by shifting II; in a receding horizon manner and appending 7,cq
to the end. In this way, the algorithm obtains a new trajectory, II;11 = {uta, ..., UrT, Tred},
and will execute the first control, u; 2. The algorithm will then repeat this process.

Algorithm 2 Learning-based Model Predictive Control (MPC) algorithm (|52, Algorithm 1])
1: Input: Recovery controller mq, human dynamics model learned via Gaussian Process,
default trajectory Iy == {uop1 = Tred, Y02 = Tred, - - - W07 = Tred }-
2: for each time step t =1,2,... do

3: II; = {us1,...,usr} < solve Trajectory Optimization (eq. (6.8))

4: if infeasible then

5: II; « {Ut_LQ, ceey U1, 7Tred}

6: end if

7 Execute the first control in IT; and observe pZ, vf pff and pﬁl

8 Compute vf" < (pfL, —pf') / h, based on eq. (6.2)

9: Update the human dynamics model using the new observation (pff, pf, pf ;)
10: end for

The key step in algorithm 2 is the trajectory optimization in line 3, which will be formalized
next in section 6.3.1. Intuitively, the trajectory optimization searches for a finite-length
trajectory that optimizes the task objective while ensuring human safety along the trajectory.
In addition, it also ensures that at the end of the trajectory, the robot is parked within its
recovery set Syeq (introduced in section 6.1.3). In other words, at the end of the trajectory,
the robot velocity is 0. In this way, within the MPC, if a feasible trajectory is found, then
this trajectory ensures safety. If no feasible trajectories are found, then by executing the
recovery controller, m.q, the robot can still ensure human safety by assumption 6.1.2. As a
result, Koller et al. [52] proves that the MPC is d-safe (see Koller et al. [52, Theorem 8§]).

6.3.1 Trajectory Optimization

The key step in the MPC formulated in algorithm 2 is the trajectory optimization in line 3.
We adapt the nonlinear trajectory optimization presented in Koller et al. [52, Eq. (43)] to
our human-robot scenario as follows:

Maximize J (6.8)
Subject to
Vt = 1727 s aT_ L: (pﬁ—lvvﬁ—l) = fR (pﬁ7vﬁ7ut) (68&)
v =0 (6.8b)
Vi=1,2,...,T —1: Effl = RobustPredict <€fH,pf) (6.8¢)

t”fl = RobustPredict <Ef " pf)
Vt=1,2,....T, ¥ptl € EfH, voll € SfH: (pH,vH,pf,vtR) €S (6.8d)

This trajectory optimization contains an objective function, denoted by J, and a set of
constraints. The objective function captures the interactive task, such as moving to the
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human shoulder position in robot-assisted dressing used in section 6.5.2. The constraint in
eq. (6.8a) specifies the robot dynamics, as defined in section 6.1.2. The constraint eq. (6.8b)
ensures that at the end of the trajectory, the robot velocity is 0, or the robot has arrived
within the recovery set S,cq. As discussed earlier, this constraint allows the MPC to leverage
the recovery controller, m.q, to guarantee safety even if the trajectory optimization finds no
feasible trajectories.

The constraint in eq. (6.8¢) implements the robot’s prediction about the future human
behavior. As introduced next in section 6.3.2, the robot will use Gaussian Processes to learn
the human dynamics, defined in egs. (6.1) and (6.2). To mitigate potential errors in the
learned models due to data noise and scarcity, the robot has to quantify its uncertainty
about the true human dynamics and plan motions to ensure human safety under uncertainty.
The trajectory optimization employs geometric sets, such as ellipsoids, to bound the robot’s
uncertainty about future human states. In particular, £ " and St”H bound the uncertain
possible human positions and velocities, respectively, at time ¢. The constraint in eq. (6.8c¢)
implements how such ellipsoids propagate forward in time, given the robot state, by a function
called “RobustPrediction”, which will be discussed next in section 6.3.2. Koller et al. [52,
Corollary 7| shows that under certain assumptions, these ellipsoids are well-calibrated in the
sense that they contain the true human state with a high probability.

The constraint in eq. (6.8d) specifies that for all the possible human states within the
ellipsoids, the robot trajectory will ensure human safety. One key technical challenge is to
apply the safe set, which is defined for a single human state, as formulated in section 6.2,
to all the human states bounded by ellipsoids. Another technical challenge is to formulate
the disjunction “or” in the definition of “collision avoidance or safe impact” in the nonlinear
optimization. Both these challenges will be addressed later in section 6.4.

6.3.2 Robust Human Motion Prediction

The robot learns a human dynamics model from past observations of human movement.
Let {g;}", denote a set of n past measurements of the unknown function g, formulated in
eq. (6.1), at the input locations {(pf, pf)}7,. We assume that the measurements, along
all dimensions, are corrupted by an ¢.i.d. Gaussian noise. Formally, for each data point
i =1,2,...,n, for each dimension j = 1,2,3, we have that [¢;]; = [9(p/,pF)]; + w with
w ~ N(0,\2), where [z]; denotes the j-th dimension of the vector 2.

To quantify the robot’s uncertainty about the learned function, by following Koller et al.
[52], the robot learns the multi-output function g via Gaussian Processes (GP). We denote a
Gaussian process by GP(m, k), where m is the prior mean function and k is the covariance
(or kernel) function. For details about Gaussian Process, please refer to section 3.3.

It is challenging to ensure safety for arbitrary human behavior, because the speed of
human motion can be an order of magnitude faster than that of robots [50], and a moving
human can inflict arbitrary collision forces upon robots [308|. In this work, we assume that
the human dynamics captured by the function g is smooth. Formally,

Assumption 6.3.1 (Assumption 1 in Koller et al. [311]). The function ¢ has a bounded
reproducing kernel Hilbert space norm induced by a continuously differentiable kernel k, i.e.,
l9'llx < B.
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Here, ¢’ denotes the surrogate single-output function, formulated in section 3.3. The
reproducing kernel Hilbert space norm is also briefly introduced in section 3.3. This assumption
implies that the human behavior, represented by g, remains smooth not only in collision-free
cases, but also in the cases where collisions occur. Despite being strong, this above assumption
is valid in practice when the robot is operating at a low speed and with a compliant controller.
Compliant controllers [300, 312, 313| can use control authority to render a robot to behave
like a virtual mass-spring-damper system that reacts to contact forces in a compliant manner.

With assumption 6.3.1, by lemma 3.3.1, the robot can use its GP predictions to build
reliable confidence intervals for g at human states that are unseen in the past, which allows
the system to robustly predict the future human states. In particular, at each time step ¢,
given the current pf* and pf, the system can construct an ellipsoid, denoted by Effl to bound
all the reachable human position, pgl, at time ¢ + 1. Similarly, the system can also construct
an ellipsoid £} to bound all the reachable v/ ,. Furthermore, given the current pf , and
the uncertain human position within Sffl, the system can leverage the desired geometric

properties of ellipsoids to construct new sets of ellipsoids, Sfo and ngQ to bound all the
reachable states at time ¢ 4+ 2. This forward-in-time propagation of ellipsoids is formally
defined by eq. (6.8c). The derivation of the expressions for the ellipsoids and the propagation
function follows Koller et al. [52, sec. V.A.2)|. With the propagation function, the system
predicts the human future positions and velocities as two sequences of ellipsoids. With my
assumption 6.3.1, I obtain the theoretical result stated in Koller et al. [52, Corollary 7] that
these ellipsoids are guaranteed to contain the true human state with a high probability.

6.4 Safety Constraints for Collision Avoidance Or Safe
Impact

In section 6.2, we formally define the safe set S as the set of human-robot states where either
there is no collision or the impact is safe even when the human and robot collide. To ensure
safety, we need to integrate the constraint that the human-robot state always stays within S.
However, this is nontrivial for two reasons. First, recall that the safety constraint formulated in
section 6.2 specifies the set of safe robot states given a single human state (p, v). However,
due to the robot’s uncertainty about the true human dynamics, the trajectory optimization
formulated in eq. (6.8c) has to predict future human motion as sets of states, represented
by ellipsoids. As a result, the safety constraint formulated in section 6.2 cannot be directly
integrated into the trajectory optimization eq. (6.8). Second, the safety constraint contains a
disjunction “or”. Directly integrating it into trajectory optimization would result in a mixed-
integer program, potentially leading to large computation overhead. Next, sections 6.4.1
and 6.4.2 extends the collision avoidance and safe impact constraints, respectively, to be
compatible with human predictions in the forms of ellipsoids. Then, section 6.4.3 reformulates
the disjunction to avoid the need for solving mixed-integer programs. Finally, section 6.4.4
integrates the reformulated safety constraint back into the trajectory optimization that is
initially formulated in eq. (6.8).
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6.4.1 Collision Avoidance with Ellipsoidal Human Predictions

To ensure collision avoidance, as defined in section 6.2.1, the robot position, p%, has to stay
away from the human position, p/. By assumption 6.1.1 that the robot is represented as
a point mass, collision avoidance can be enforced by ensuring that the robot always stays
outside the ellipsoids for human positions. Formally, given that p® is bounded by the ellipsoid
er” parameterized by a center vector " and a shape matrix QpH, the collision avoidance
(CA) constraint can be formulated as follows:

Cstoa(p™, €)= (" = &)1 (@) (P =) =1 >0 (6.9)

This constraint can be extended to the cases where the robot is modeled as a sphere, rather
than a point mass, by enlarging &P and constraining the center of the robot to stay outside
the enlarged ellipsoid [314].

6.4.2 Safe Impact with Ellipsoidal Human Predictions

To ensure safe impact, as formulated in section 6.2.2, the robot velocity, v%, has to satisfy
this following constraint: Q(v, vf) < Q.y, given the human velocity, v, where the impact
potential €2 is defined in eq. (6.6). Given that the human velocity is bounded by the ellipsoid
EUH, the constraint can be rewrite as follows:

e+ 1) [|[vf —wv
voll € &7 QO of) = ( il

which can be compactly represented by the following constraint with a constant p:
vl € & HvR — vHHz <p. (6.10)

By the relation between ¢*-norm and ¢>-norm, eq. (6.10) can be conservatively relaxed to
the following constraint:

voll € &% vj € {1,2,3}: |[f); — [0");] < p/ V3, (6.11)

where [z]; denotes the j-th coordinate of the vector z. Then, by stacking the constraint for
each dimension, we equivalently rewrite eq. (6.11) as the following polytopic constraint:

vl € g Lo < Lo+ [p/\/g} = [. (6.12)

6x1

Here, L := [—1I3,I3]" € R%3 where I3 denotes the identity matrix of size 3. The notation

[p/\/g}ﬁxl denote the vector [p/\/g, p/V3,. .. ,p/\/§}T € RS, We also denote the right hand
side of eq. (6.12) by [ € RS.

Following Koller et al. [52, eq. (41)], we enforce the Polytopic constraint in eq. (6.12)
analytically to the ellipsoid &*" parameterized by a center vector ¢ and a shape matrix
Q“H. In particular, eq. (6.12) is equivalently reformulated as the following 6 individual
1-dimensional constraints:

Vie {1,...,6}: [Lli - + \/ QUL < I, (6.13)
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Figure 6.2: Given two ellipsoids for human position and velocity, denoted by &P and
EUH, respectively, the safety constraint, defined as collision avoidance or safe impact is
formulated in eq. (6.16). Given a fixed dimension ¢ € {1,...,6}, this plot shows the con-
straint’s feasible region by treating the function values, Cstoa (p%, SPH) and Cstgr ;(v7, SUH),
as X- and Y- axis, respectively. All pairs of (CstCA(pR, £P™Y, Ostgs (v", EUH)) in the first
quadrant indicate “collision avoidance and not safe impact”. Here, note that “not safe
impact” refers to the situation of “unsafe impacts during (hypothetical) collisions,” which
is not in conflict with “collision avoidance.” All pairs in the union of the first, third,
and fourth quadrants indicate “collision avoidance or safe impact,” which implies safety
according to our definition. All and only unsafe pairs are located within the second quad-
rant. We conservatively approximate the feasible region using the surrogate constraint:

Cstgri(vE, SUH) < max <0.01 Cstoa (pf, SPH), 1000 Cstca (p¥, EPH)), whose feasible region is
plotted in gray. The corresponding equality is represented by the red line segments. In-
tegrating this surrogate constraint, for each dimension i € {1,...,6}, into the trajectory
optimization eq. (6.8) implies that the found trajectory ensures human safety, defined as
collision avoidance or safe impact.

where, [{]; denotes the i-th dimension of the vector [ and [L];. denotes the i-th row of the
matrix L. For notational shorthand, we rewrite the set of constraints, presented in eq. (6.13)
as follows:

Vie{l,...,6}: Csts“(vR,é’”H) <0, (6.14)

where CstsLi(vR,S”H) = [L];, - " \/ QU L)) — [l e R,

6.4.3 Disjunction between Collision Avoidance and Safe Impact

In order to implement safety as “collision avoidance or safe impact,” we must disjunctively
combine the constraints for collision avoidance with those for safe impact. We combine the
collision avoidance constraint in eq. (6.9) and the safe impact constraint in eq. (6.14) into the
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following disjunctive normal form:

Cstea(p™, €7 )>0\/ | /\ OCstsri(v",€") <0] . (6.15)

i€{1,2,....6}

with function arguments omitted for notational convenience. Here, \/ and A denote the
operators of logical disjunction and conjunction, respectively. Equation (6.15) is then
equivalently reformulated as the following conjunctive normal form:

/\ [CstCA(pR,SpH) >0 \/ Cstsu(vR,E”H) <0|. (6.16)

i€{1,2,...,6}

Unfortunately, directly integrating the constraint eq. (6.16) into the trajectory optimization
eq. (6.8) would make the optimization a mixed-integer program, leading to large computation
overhead. Instead, we will conservatively approximate eq. (6.16) with a surrogate constraint,
which eases the computation overhead for trajectory optimization.

To motivate the surrogate constraint, let’s visualize the constraint eq. (6.16), given a
particular dimension i € {1,2,...,6}, in a 2-dimension plane with X- and Y- axes representing
Cstca and Cstgpy, respectively. As shown in fig. 6.2, the safe region of this one-dimensional
constraint is the union of the first, third, and fourth quadrants.

Inspired by the Rectified Linear Unit (ReLU) function, we conservatively approximate
the constraint in eq. (6.16) for each dimension ¢ € {1,2,...,6} using the following surrogate
constraint:

A [Cstsis(o €) < max (6, Cstea(p™, €), 0, Cstea(r™ €))] . (6.17)

i€{1,2,....6}

with hyper-parameters #; > 0 and 65 > 0. The feasible region of the surrogate constraint, in
the case where #;, = 0.01 and 6, = 1000, is the gray region in fig. 6.2. Since the gray region is
a strict subset of the union of the first, third, and fourth quadrants, satisfying the surrogate
constraint is a sufficient but not necessary condition for satisfying the constraint eq. (6.16).

6.4.4 Integrating Safe Constraints into Trajectory Optimization

Next, we integrate the surrogate constraint eq. (6.17) into the eq. (6.8d) in the trajectory
optimization. Recall that at the end of section 6.3.2, we have mentioned that the ellipsoids
are guaranteed to contain the true future human state with a high probability. Now that the
surrogate safety constraint eq. (6.17) implies that the robot state (p?,v®) ensures human
safety given that the human state lies within the ellipsoids. Hence, the trajectory optimization
will generate trajectories that ensure human safety, defined as collision avoidance or safe
impact, with a high probability. By integrating this trajectory optimization within the MPC
algorithm (algorithm 2), the MPC algorithm ensures d-safety (see Koller et al. [52, Theorem

g)).
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6.5 Empirical Experiment

Our goal is to empirically evaluate the improvements to task efficiency resulting from the
definition of safety as collision avoidance or safe impact. We benchmarked our MPC with
safety defined as collision avoidance or safe impact (henceforth referred to as CASI), along
with its variation with safety defined only as collision avoidance (henceforth referred to as
CA). We evaluated these algorithm variations using two tasks: a simulated 2D goal-reaching
task and a real-world robot-assisted dressing task. Our hypothesis was that CASI would
result in a smaller number of iterations necessary for the completion of both tasks.

We considered a realistic scenario in which a system designer could first collect non-
interactive data of the human performing a task without the robot, then allow the robot
to operate around the human in order to collect more interactive data. Accordingly, we
collected a small, non-interactive dataset by fixing the robot at a predefined location, p¥,
and letting the human (simulated or real) roll out their policy. Then, we ran the MPC with
the trained GP until the robot reached the goal, where only the GP’s posterior (and not its
hyper-parameters) was updated between iterations. During our experiments, we expected
our robot to act safely and efficiently under the uncertainty caused by the distribution shift
from the initial training scenarios, where p* = p, to the testing scenarios, where p¥ moved.

For both tasks, we implemented 7,.. as a safety stop, as described in section 6.1.3. In
keeping with previous work [52, 315|, since the theoretical confidence intervals for the GP
model are conservative, we chose to set lemma 3.3.1’s scaling parameter § = 2 to enable
efficient task completion under uncertainty.

6.5.1 2D Goal-Reaching

We simulated human behavior within a 2D environment by online optimizing a continuous
trajectory to track a precomputed discrete MDP policy. This policy aimed to reach a
predefined goal, denoted as pZ, while avoiding obstacles in the environment. We generated
five environments with randomly located obstacles denoted as Env1, ..., Env); these obstacles
were used only for the human, not the robot, to focus our evaluation on the robot’s capability
in ensuring human safety. The proposed method can handle static obstacles by adding extra
constraints in the trajectory optimization section 6.3.1.

We designed three objective functions for the human’s trajectory optimization. The first,
H-Indep-R, was designed to track the MDP policy. The other two, H-To-R and H-Away-R,
were minimizing and maximizing (respectively) the distance to the current robot position,
besides policy tracking. We anticipated that our human model g in eq. (6.1) could capture
the dependency of the human’s behavior upon the robot states.

The robot’s task was to efficiently reach the goal while ensuring the simulated human’s
safety, with a predefined starting location of pf and goal location of pf. Our initial dataset
contained 45 input-output pairs collected from 3 rollouts of the simulated human. Figure 6.3
shows a snapshot of the robot and human in the environment along with the human prediction.

We define an iteration as a time step where the system runs safe MPC to find a plan,
and execute the first control signal, as described in section 6.3. An experiment is defined as
the system running the safe MPC iteratively until p¥ is reached or the maximal number of
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Figure 6.3: A comparison, in the form of robot trajectories and human ellipsoidal predictions,
of the feasible solutions found by CASI and CA in the 2D goal-reaching domain. The red
B represents the robot positions for ¢ € {2,3,4,5} along the trajectory. Here, the robot
positions for t = 4 and 5 overlap due to the trajectory optimization’s constraint eq. (6.8b).

For t € {2,3,4,5}, the human position ellipsoids, &’ H, are plotted in different colors, whose
centers are the green M. The grey dots indicate the input human positions within the initial
dataset for GP training. CASI produced a more efficient path by allowing the path to enter
the human position ellipsoids, which CA does not allow. Thus, defining safety as collision
avoidance or safe impact provided more flexibility than collision avoidance alone, allowing
the planner to be less conservative while still guaranteeing safety.

iterations, set to 50, is reached.

We benchmarked two variations of CASI, CASI (Q2yax = 0.6) and CASI (Qpax = 0.3),
against CA. Here, Q.. denotes the maximum allowable impact potential as defined in
section 6.2.2 and we set its values according to Heinzmann and Zelinsky [308]. We ran 30
trials for each condition and evaluated performance based on the following measurements:
(1) #lteration: the number of iterations taken for the robot to reach pf (per trial); (2)
#SafeCollision: the number of collisions involving safe impact (per trial); (3) %SafeCollision:
the percentage calculated by #SafeCollision divided by #lteration; (4) # UnsafeCollision: the
number of collisions involving unsafe impact (per trial); and (5) PlanTime (s): the amount
of time taken to solve the trajectory optimization (per iteration).

6.5.2 Robot-Assisted Dressing

We deployed our algorithm to perform a real-world robot-assisted dressing task, wherein the
robot must dress a sleeveless jacket onto a human arm (the human’s fist is already inside
the armhole upon task initiation). In this task, the robot runs the MPC, integrated with
a framework that interleaves planning and execution [16], to find paths for its end-effector
to reach the goal, p®, near the human shoulder position, denoted by psrouder- Both pf and
Pshoulder are assumed to be known and fixed.

We assumed that the human elbow never bends during the task, and accordingly modeled
the human hand as a point mass and approximated the arm configuration by linear interpo-
lation between the hand and pghouger- Our system also duplicated the ellipsoidal predictions
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H
Po

(a) Formulation of the dressing task (b) Initial data collection

Figure 6.4: (a) The robot models the human hand and robot end effector as point masses. By
assuming that the human shoulder position, pshoulder, 1S known to the robot and static during
the dressing process, the robot then approximates the human arm by linearly interpolating
between the hand position, pf, and pgeuider- At t = 0, the hand is observed directly by a
sensor with the position p{ (green cross), and the human arm is illustrated as the orange

rectangle. At time 1, the robot first predicts the human hand position as an ellipsoid &V "
(in dark purple), which is constructed to bound the true hand position, pf’. The robot then
duplicates this ellipsoid multiple times (in light purple) along the line between the center of

&y " (green square) and the human shoulder position (green disc). The duplicated ellipsoids
are constructed to bound the true human arm, assuming that the human arm does not bend
during the dressing process. To enable dressing, the robot adds an “armhole” constraint
to the trajectory optimization section 6.3.1, to ensure that the robot always stays close to
the human arm during the dressing process. For example, at time ¢ = 1, this constraint
enforces that the distance df’# (black curly brackets) between the robot position pff and the
interpolated line connecting the centers of the duplicated ellipsoid (black solid line) must
be < dHE_ (b) Initial non-interactive human dynamics data was collected by allowing the
human to dress themselves.

for the hand positions to bound the arm configuration, as described in fig. 6.4a. Accordingly,
the trajectory optimization used all ellipsoids for hand position and arm configuration, as
well as ellipsoids for hand velocity, when ensuring safety constraints. We have considered
lifting this assumption in future work by drawing insights from prior art [10, 276, 316-318|.

As shown in fig. 6.1, the robot must remain physically close to the human arm due
to the limited size of the armhole, which makes this task appropriate for evaluating the
benefits of optimizing for safety, defined as collision avoidance or safe impact, rather than
just collision avoidance. We encoded the armhole constraint approximately by adding an
additional constraint, df® < dHE for all t = 1,2,...,T, to the trajectory optimization

max
section 6.3.1. Here, d% denotes the distance between the robot position pf* and the line

between pgnoulder and the center of the ellipsoid EF H, as illustrated in fig. 6.4a. The threshold
dHE encodes the size of the armhole.

Our initial dataset contained 16 input-output pairs collected from two human rollouts
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Figure 6.5: The mean and standard error of #Iteration in the 2D goal-reaching domain.
The benchmark included running CASI (Qax = 0.6), CASI (Qpax = 0.3), and CA, with 15
different simulated human behaviors (five environments and three objective functions). CASI
(Qmax = 0.6) achieved the highest efficiency, while CA yielded the lowest.

during which the human used her left arm to dress her right arm while the robot remained
static, as shown in fig. 6.4b. We conducted a case study to compare CASI (Qy = 1) against
CA under three conditions wherein d22 was set to 0.08m, 0.085m, and 0.09m. We measured

#lteration and TotalTime (s), which is the total amount of time taken by the robot to reach
p? (different from #PlanTime).

6.6 Results

6.6.1 2D Goal-Reaching

We benchmarked the three algorithm variations, CASI (Qpax = 0.6), CASI (Qpax = 0.3), and
CA, using 15 different simulated human behaviors (five environments and three objective
functions), for 30 trials, and measured #Iteration, #SafeCollision, %SafeCollision, # Un-
safeCollision, and PlanTime in each trial. In all conditions, #UnsafeCollision was always
0, verifying the safety guarantee provided by all three algorithm variations. The results of
#lteration, #SafeCollision, %SafeCollision, and PlanTime under all conditions are presented
in table 6.1. For each measurement, we conducted a Wilcoxon signed-rank test to perform
pairwise comparisons among the three algorithm variations.

The results of #Iteration are presented in table 6.1 and fig. 6.5. Both CASI (Q,.x = 0.6)
and CAST (Qax = 0.3) had a significantly lower #Iteration than CA (both p < 0.001 resulting
from the Wilcoxon signed-rank test); hence, CASI produced significantly more efficient plans
than CA. The definition of safety as collision avoidance or safe impact, rather than just
collision avoidance, allowed the planner to be less conservative while still guaranteeing safety.
This is illustrated in fig. 6.3, where even though the ellipsoids in CASI and in CA had roughly
similar areas, CASI produced a more efficient path by allowing the path to enter the ellipsoids,
which CA does not allow. In addition, CASI (Q.x = 0.6) had a significantly lower #Iteration
than CASI (Qpax = 0.3) (p < 0.001), which implies that the benefit to efficiency increases as
Qnax IncCreases.

The results of #SafeCollision and %SafeCollision are presented in table 6.1. Regarding
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Environment 1 Environme ent 2 Environment 3 Environment 4 Environment 5

H-Indep-R H-To-R  H-Away-R | H-Indep-R  H-To-R  H-Away-R | H-Indep-R  H-To-R. H-Away-R | H-Indep-R H-To-R  H-Away-R | H-Indep-R H-To-R  H-Away-R

.6) #Iteration 6.133 6.100 6.233 6.367 6.167 6.600 6.633 6.300 6.533 6.267 6.100 6.833 6.333 6.100 7.067
n

.3) 8.733 7.467 10.133 9.600 8.267 8.900 7.933 7.033 10.333 10.133 7.533 10.167 9.400 7.700 12.100
11.533 11.333 12.733 14.967 15.500 12.733 9.833 8.967 12.000 13.067 10.633 12.967 13.267 10.667 14.767

.6) 4 SafeCollision 0.767 1.267 0.500 0.467 0.600 0.600 0.333 0.600 0.333 1.300 1.133 0.833 0.367 0.867 0.400
= 0.3) #SafeCollision 0.633 0.833 0.567 0.533 0.767 0.433 0.167 0.633 0.333 1.133 1.133 0.967 0.533 0.933 0.367
1.033 1.000 0.633 0.333 0.667 0.267 0.600 0.500 0.400 1.300 1.200 0.733 0.933 1.000 0.433

0.107 0.178 0.070 0.067 0.081 0.075 0.044 0.085 0.046 0.180 0.160 0.105 0.047 0.123 0.052

0.065 0.102 0.054 0.062 0.090 0.044 0.021 0.079 0.034 0.106 0.139 0.091 0.051 0.114 0.034

0.095 0.104 0.043 0.023 0.036 0.022 0.055 0.055 0.036 0.107 0.112 0.056 0.060 0.105 0.037

0.299 0.469 0.307 0.335 0.464 0.332 0.355 0.731 0.369 0.298 0.494 0.337 0.312 0.590 0.397

0.432 0.636 0.510 0.571 0.847 0.614 0.412 0.718 0.494 0.454 0.661 0.496 0.567 0.662 0.522

0.145 0.283 0.132 0.146 0.258 0.141 0.135 0.312 0.127 0.147 0.315 0.153 0.154 0.232 0.167

Table 6.1: The means of #Iteration, #SafeCollision, %SafeCollision, and PlanTime in the
2D goal-reaching domain. The benchmark included running CASI (Qp.x = 0.6), CASI
(Qmax = 0.3), and CA, with 15 different simulated human behaviors (five environments and
three objective functions), and 30 trials for each condition. The algorithm that achieved the

lowest value among the three algorithm variations for each measurement is highlighted in
bold.

#SafeCollision, no significant pairwise differences were found. The p-value from the Wilcoxon
signed-rank test for the pair, CASI (Quax = 0.6) and CA, was 0.583. The p-value for CASI
(Qmax = 0.3) and CA was 0.202. The p-value for CASI (Qpax = 0.6) and CASI (Qpax = 0.3)
was 0.552. Regarding %SafeCollision, we have found that CASI (2. = 0.6) achieves
a significantly higher %SafeCollision than both CASI (Qu.x = 0.3) (p < 0.001) and CA
(p < 0.001), while no significance found between CASI (Qyax = 0.3) and CA (p = 0.092).

This result implies that the extra flexibility in (Q2p.x = 0.6) resulted in an increase
percentage of collisions during the task. This does not invalidate CSAI’s safety for two
reasons. First, even though CASI (Q.x = 0.6) has a higher percentage of collision, its
#UnsafeCollision is 0, which means that it is still safe based on our definition of safety.
Second, CASI (Quax = 0.6) completed the task in less number of iterations, so even though
its percentage of collision is higher, its number of collisions is not significantly higher than the
other methods. In summary, CASI allows collisions to occur, as long as the impacts are safe,
while CA does not allow collisions at all. However, CASI does not always result in higher
numbers of safe collisions than CA.

The results of PlanTime are presented in table 6.1. Both CASI (2. = 0.6) and CASI
(Qmax = 0.3) had a significantly longer PlanTime than CA (both p < 0.001). Thus, the
trajectory optimization in CASI took significantly longer to solve than the optimization in
CA. One potential reason is that CASI needs to construct ellipsoids for both human positions
and velocities, while CA only needs to do so for human positions. Another potential reason is
the numerical challenge in handling the potentially stiff surrogate constraint, as formulated in
eq. (6.17), could make the optimization in CASI harder to solve than the optimization in CA.
In addition, CASI (Quax = 0.3) had a significantly longer PlanTime than CASI (Qax = 0.6)
(p < 0.001), which implies that solving the trajectory optimization becomes harder as ax
decreases. In real-time control scenarios where robots need to replan at 50Hz [319], the
extra computation in our MPC could counteract the benefits in achieving a lower #Iteration.
However, in many HRI scenarios, where the robot is equipped with compliant controllers,
replanning at a much lower frequency could suffice. In such cases, our MPC’s strength in
finding safe and efficient solutions could potentially outweigh its weakness in longer planning
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Figure 6.6: The trajectories of the robot end-effector positions, recorded during one execution
of the assisted dressing task. Each subplot depicts trajectories along three dimensions (z,y, z)
produced by two algorithm variations, CASI (,.x = 1) and CA; hence, each subplot includes
six trajectories. (a) presents the case of dIft = (.08m, which means the robot end-effector

had to remain within 0.08m of the human arm. (b) and (c) present the case of 22 = 0.085m

and 0.09m, respectively. In both (a) and (b), CASI achieved much higher efficiency than CA.
In (¢), CASI and CA achieved a similar efficiency, though CASI was slightly more efficient.

time, resulting in a shorter total time in task completion, which is demonstrated in the
robot-assisted dressing domain in section 6.6.2.

6.6.2 Robot-Assisted Dressing

We ran our system with one subject as a case study, leaving a full user study for future
work. Figure 6.6 depicts the trajectory of robot positions recorded during a single task
execution along three dimensions (z, y, and z) in Cartesian space. Figure 6.6(a) represents
the execution in the case of d2£ = 0.08m, meaning that the robot end-effector had to stay
within 0.08m of the human arm. Our planner, CASI (Q. = 1), was able to reach the goal
in 11 iterations and 29.30s, while CA reached the goal in 49 iterations and 223.52s. One
explanation for the inefficiency observed with CA is that it is challenging to satisfy both the
collision avoidance constraint and the armhole constraints, d?% < d2E for all t = 1,2,...,T
as formulated in section 6.5.2, while under large uncertainty about the future human motion.
As depicted in fig. 6.4a, if the uncertainty represented by the ellipsoids is huge, then collision
avoidance motivates pk to stay very far from the human arm (solid black line). However,
the armhole constraint requires p to stay close to the human arm; hence, CA needed to
collect much more data in order to significantly reduce the uncertainty (size of the ellipsoids)
before finding feasible plans. In contrast, CASI allowed greater flexibility by ensuring safety
as CA or SI. Thus, even when uncertainty about future human motion is relatively high, the
robot can still find feasible plans by ensuring safe impact, resulting in more efficient task
completion.

As we slightly relaxed the armhole constraint, the robot gained more freedom for collision
avoidance. When dZE = 0.085m, CA accomplished the task in 40 iterations and 87.02s,
which is still much longer than CASI (Qyax = 1), which completed the task in 13 iterations
and 23.22s. When d2ft = (0.09m, both algorithm variations yielded similar performance, with

max

CASI (Qpax = 1) still a bit more efficient than CA (12 iterations and 22.57s compared with
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32 iterations and 25.78s, respectively). In conclusion, CASI was able to accomplish the task
and ensure safety, even when close contact between the human and robot was unavoidable.

6.7 Conclusion

This chapter presented a planning framework for safe and efficient human-robot interaction
under uncertainty. Traditional approaches define safety as strict collision avoidance, which
often forces the robot to freeze when uncertainty about future human motion is high. This is
particularly limiting in physically assistive tasks like dressing, where contact is sometimes
necessary for progress.

To address this, I introduced a two-pronged safety constraint: the robot is safe if it
either avoids collisions or ensures any contact remains low-impact. I formally integrated this
constraint into a learning-based model predictive control algorithm that models and updates
uncertainty about human motion from data.

Empirical results in both simulation and physical dressing experiments showed that this
approach significantly improved task efficiency while maintaining safety guarantees, compared
to planners that enforce collision avoidance alone.

These results underscore a central insight of this thesis: that when uncertainty about
human behavior cannot be eliminated, robots must reason conservatively, but not rigidly.
By formally redefining safety to include both collision avoidance and safe contact, this work
shows that conservative planning can still allow meaningful progress in assistive tasks. Rather
than waiting passively for uncertainty to diminish, the robot acts cautiously but decisively,
ensuring safety while maintaining efficiency. This approach exemplifies how robots can adapt
their decision-making to hard-to-predict human behavior, not by ignoring uncertainty, but
by reshaping constraints to accommodate it safely.
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Chapter 7

Conclusion and Future Directions

“Knowing is not enough; we must apply. Willing is not enough; we must do.”

—Johann Wolfgang von Goethe

7.1 Conclusion

Uncertainty is inevitable in human-robot interaction. Whether a robot is learning what a
person prefers, estimating their hidden state, or planning how to assist them physically, it
must operate with incomplete and imperfect information. This thesis has addressed the core
question: How should a robot behave when it is uncertain about the human?

Rather than treating uncertainty as a nuisance, I propose embracing it as a guiding
design principle. Across three contributions, this thesis demonstrates how robots can reduce,
represent and respect, and act under uncertainty to provide safe and effective assistance.

7.1.1 Reducing Uncertainty about Preferences using Cognitive Feed-
back

In scenarios where the robot learns from human preferences, I showed that subtle behavioral
cues, such as response time, can provide valuable information about preference strength.
By modeling the human cognitive process behind decision-making, the robot can learn
preferences more efficiently than relying on choices alone. This cognitive feedback enables
faster personalization without increasing user burden.

7.1.2 Representing and Respecting Uncertainty during State Esti-
mation

In physical interaction settings such as robot-assisted dressing, human states, such as the
elbow position, may be occluded and cannot be directly observed. I introduced a set-
based estimator, GP-ZKF, that explicitly represents epistemic uncertainty from learned
dynamics and observation models, as well as aleatoric uncertainty from noise. By constructing
conservative geometric estimates that are guaranteed to contain the true human state with
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high probability, GP-ZKF enables the robot to avoid overconfidence and remain consistent,
even when the test-time scenarios differ from the training data.

7.1.3 Acting under uncertainty with relaxed safety constraints

Finally, I addressed how a robot should plan physical assistance in the presence of uncertainty
about human motion. Traditional planners enforce strict collision avoidance, which can lead
the robot to freeze in uncertain environments. I proposed a new safety constraint that allows
either collision avoidance or safe low-impact contact. This redefinition of safety enables the
robot to assist more effectively without compromising physical safety.

Together, these contributions form a unified framework for uncertainty-aware personaliza-
tion in human-robot interaction. The proposed methods span different stages of the robot
pipeline, learning, estimation, and planning, but share a common theme: explicitly modeling
and responding to uncertainty to improve interaction.

7.2 Future Directions

This thesis explored how robots can act under uncertainty about humans, whether in their
preferences, physical states, or movements. By developing principled approaches to reduce,
respect, and act under uncertainty, this thesis lays a foundation for personalizing robot
assistance in a reliable and human-centered way. Yet, many challenges remain in scaling
these methods to real-world robot-assistive scenarios involving actual users. Below, I outline
several future directions that build on this thesis.

7.2.1 Contact-Rich Dexterity for Real-World Assistance

The third contribution of this thesis (chapter 6) addressed uncertainty in robot-assisted
dressing, enabling robots to plan trajectories that adapt to uncertain human arm movements.
However, real-world assistance involves richer physical contact. Human caregivers do not
just slide garments. They gently adjust and flatten clothing, regrasp clothing as needed,
and apply force with care and precision, often without clear visual feedback of the user’s
body. These skills require fine control of both motion and force to manage the contact, which
remains challenging for classical model-based methods.

Recent advances in imitation learning provide a promising alternative. For instance,
Hou et al. [320] use diffusion policies to learn both movement and compliance from human
demonstrations, balancing precision and responsiveness. Black et al. [321] develop a vision-
language-action model to imitate humans in contact-rich and long-horizon tasks such as
folding shirts. Adapting such methods to assistive settings could unlock new levels of dexterity
and responsiveness in physical interaction.

However, these approaches are often black-box and difficult to interpret or control. This
raises important safety challenges. A future direction is to build deployment pipelines
that incorporate uncertainty estimation into policy execution, stress-test behaviors through
adversarial “red-teaming,” and provide supervisory interfaces so caregivers can monitor and
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intervene. The goal is to combine the expressiveness of learned policies with the transparency
and safety needed in assistive settings.

7.2.2 Coordination through Communication

The second and third contributions of this thesis (chapters 5 and 6) focus on robot assistance
where the human passively responds to the robot’s actions. However, many assistive tasks
require active coordination between the human and the robot. For instance, after the robot
assists a user in dressing one arm, guiding the second arm into the sleeve often requires the user
to move intentionally and in sync with the robot. This type of interaction demands mutual
understanding: the robot must infer the human’s intent, and the human must anticipate the
robot’s actions. In such scenarios, communication, both physical and verbal, is essential for
effective collaboration.

My earlier work on human-robot coordination [55, 56| explored how robots can model
uncertainty over human intent and decide both when and what to communicate. For example,
the robot could use language to request a specific action from the human or inform the human
about its own intended behavior. Crucially, the robot would only communicate when necessary,
striking a balance between informativeness and the need to avoid over-communication.

Future work could bring these ideas to assistive robotics. With large language models
(LLMs), robots now have powerful tools for communication. A promising direction is to build
datasets of real caregiver-user interactions and fine-tune LLMs to communicate appropriately.
The central challenge is enabling the robot to reason about uncertainty in human intent and
decide when and how to communicate, whether to request, inform, or ask a question, in order
to coordinate efficiently and safely.

7.2.3 Learning from Multimodal and Evolving Human Feedback

The first contribution of this thesis (chapter 4) showed that response time provides valuable
information about human preference strength, augmenting binary comparisons. But response
time is only one lens into the human cognitive process, and it can be unreliable, especially in
real-world crowdsourcing settings where human attention fluctuates [322].

A natural next step is to integrate multiple modalities of implicit feedback, such as gaze
patterns, facial expressions, and hesitation. For example, users may replay trajectories or
hesitate when uncertain, a signal similar to long response times. Algorithms that interpret
these behaviors as implicit feedback could facilitate faster and less burdensome preference
learning. Combining implicit signals with explicit feedback and task-level metrics will lead to
more grounded, human-aware personalization.

Beyond a single interaction, human preferences, trust, and goals evolve, particularly in
assistive settings that involve learning or rehabilitation. For example, users may adapt as they
gain familiarity or confidence with the robot. A person who initially prefers slow, conservative
motions may later desire faster, more autonomous assistance. Modeling this human-robot
co-adaptation is key to long-term personalization. One promising direction is to view the
problem as a two-player game with asymmetric information [323], where both the robot and
human adapt over time, each with partial knowledge of the other.
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7.2.4 From Passive Feedback to Active Human Input

The preference learning framework developed in this thesis’s first contribution (chapter 4)
treats humans as passive agents who respond to robot-generated queries. But people have
their own sense of autonomy [12], and may want to guide the robot proactively, for example,
by saying “go slower” or “try something else.” Future work should explore how to integrate
such human-initiated feedback with robot-initiated querying.

A key challenge is designing a personalization system that balances both modes of
interaction: allowing the robot to ask meaningful questions when uncertain, while also
recognizing when users want to take the lead. Studying how different users experience
autonomy, agency, and cognitive load will be crucial for creating systems that adapt not just
to what users prefer, but how they prefer to interact.

Toward Lifelong Personalized Assistance

Ultimately, I envision a future in which robots do more than execute preprogrammed tasks.
They continuously learn from human behavior, both explicit and implicit, and adapt their
assistance accordingly. They act safely even in uncertain situations, and evolve alongside
users as their needs change.

This thesis takes a step in that direction by placing uncertainty at the center of robot
personalization. Future work will continue this trajectory: enabling robots to reason not just
about what a person did or said, but what they need, what they are learning, and how their
preferences, capabilities, and trust evolve over time.
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Appendix A

Appendix for Chapter 4: Reducing
Uncertainty about Preferences Using
Cognitive Feedback

This appendix provides theoretical background, technical derivations, and experimental
details that support the results in Chapter 4. That chapter addresses how robots can reduce
uncertainty about human preferences by leveraging cognitive feedback, specifically, human
response times, in addition to binary choices. To enable this integration, we build on cognitive
models of human decision-making from psychology and neuroscience, especially bounded
accumulation models. These models provide a principled way to interpret response times as
implicit feedback that reveals preference strength.

The appendix is organized into three sections. Appendix A.1 reviews relevant literature
on decision-making models and estimation methods. Appendix A.2 presents formal proofs
supporting our estimator’s properties, including asymptotic normality and non-asymptotic
concentration bounds. Appendix A.3 describes experimental setups and data processing
pipelines for the empirical results presented in Chapter 4.

A.1 Literature review

This section provides background on the cognitive modeling techniques used in Chapter 4,
including bounded accumulation models and estimation methods.

A.1.1 Bounded accumulation models for choices and response times

Bounded Accumulation Models (BAMs) describe human decision-making using an accumulator
(or sampling rule) and a stopping rule [245]. In binary choice tasks, such as two-alternative
forced choice tasks, a widely used BAM is the drift-diffusion model (DDM) [242|, which
models decisions as Brownian motion with fixed boundaries. To capture differences in human
response times for correct and incorrect answers, Ratcliff and McKoon [242] allows drift,
starting point, and non-decision time to vary across trials. Wagenmakers, Van Der Maas,
and Grasman [43] later introduced the EZ-diffusion model (EZDM), a simplified version of
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DDM with closed-form solutions for choice and response time moments, making parameter
estimation easier and more robust. EZDM assumes a deterministic drift, a starting point, and
a non-decision time, fixed across trials, with the starting point equidistant from the boundaries.
Berlinghieri et al. [251] specialized EZDM to the difference-based EZDM (dEZDM), where
the drift represents the utility difference between two options. For binary queries with arms
z1 and zy, the drift is modeled as u,, — u,,, where u,, and u,, are the utilities of z; and z,.

As discussed in section 4.1, we impose a linear utility structure on the dEZDM, where
each arm’s utility is given by u, = z'60*, with 6* denotes the human preference vector.
This approach is supported by both bandit and psychology literature. In bandits, linear
utility models scale efficiently with a large number of arms [252, 324]. In psychology, linear
combinations of attributes are commonly used in multi-attribute decision-making models [254—
256]. The standard dEZDM in [251, Definition 1] is a special case of our dEZDM with a
linear utility structure, where arms correspond to the standard basis vectors in Euclidean
space R?. This mirrors the relationship between multi-armed bandits and linear bandits.

Similarly to our approach, Shvartsman et al. [325] parameterize the human utility function
as a Gaussian process and propose a moment-matching Bayesian inference method that uses
both choices and response times to estimate latent utilities. Unlike our work, their focus is
solely on estimation and does not address bandit optimization. Integrating their estimation
techniques into bandit optimization presents an interesting avenue for future research.

Another widely used BAM is the race model [243, 326], which naturally extends to queries
with more than two options. In race models, each option has its own accumulator, and
the decision ends when any accumulator reaches its barrier. BAMs can also model human
attention during decision-making. For example, the attentional-DDM [46, 256, 327| jointly
models choices, response times, and eye movements across different options or attributes.
Similarly, Thomas et al. [328| introduce the gaze-weighted linear accumulator model to study
gaze bias at the trial level. To incorporate learning effects, Pedersen, Frank, and Biele
[329] combines reinforcement learning (RL) with DDM, where the human adjusts the drift
through RL. In contrast, our work uses RL for Al decision-making when interacting with
humans. BAMs also connect to Bayesian RL models of human cognition. For example,
Fudenberg, Strack, and Strzalecki [330] propose a model where humans balance decision
accuracy and time cost, showing it is equivalent to a DDM with time-decaying boundaries.
Neurophysiological evidence supports BAMs. For instance, EEG recordings demonstrate that
neurons exhibit accumulation processes and decision thresholds [245]. Additionally, diffusion
processes have been used to model neural firing rates [331].

A.1.2 Parameter estimation for bounded accumulation models

BAMs often lack closed-form density functions, so hierarchical Bayesian inference is commonly
used for parameter estimation [246]. While flexible, these methods are computationally
intensive, making them impractical for real-time applications in online learning systems.
Faster estimators [43, 251, 270| usually estimate parameters for individual option pairs
without leveraging data across pairs. To address this, we propose a computationally efficient
method for estimating linear human utility functions, which we integrate into bandit learning.
In section 4.4.2, we empirically show that our estimator outperforms those from prior work [43,
270].
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In practice, using response time data requires pre-processing and model fitting, as outlined
by Myers, Interian, and Moustafa [322|. Additionally, Alés-Ferrer, Fehr, and Netzer [240],
Fudenberg et al. [250], and Baldassi et al. [332] propose statistical tests to assess the suitability
of various DDM extensions for a given dataset.

A.1.3 Uses of response times

Response times serve multiple purposes, as highlighted by Clithero [239]. A primary use is
improving choice prediction. For instance, Clithero [45] showed that DDM predicts choice
probabilities more accurately than the logit model, with parameters estimated through
Bayesian Markov chain Monte Carlo. Similarly, Alos-Ferrer, Fehr, and Netzer [240] demon-
strated that response times enhance the identifiability of human preferences compared to
using choices alone.

Response times also shed light on human decision-making processes. Castro et al. [333]
applied DDM analysis to explore how cognitive workload, induced by secondary tasks,
influences decision-making. Analyzing response times has been a long-standing method
in cognitive testing to assess mental capabilities [241]. Additionally, Zhang, Kemp, and
Lipovetzky [334, 335] introduced a framework that uses human planning time to infer their
intended goals.

Response times can also enhance Al decision-making. In dueling bandits and preference-
based RL [261], human choice models are commonly used for preference elicitation. One
such model, the random utility model, can be derived from certain BAMs [240]. For
example, as discussed after eq. (4.1), both the Bradley-Terry model [BradleyTerry1952| and
dEZDM [43, 251] yield logistic choice probabilities in the form Pz > 22| = 0yogistic(Uzy —Uz,) =
1/ (1 +exp(—c- (uy —us))), where u,, and u,, denote the utilities of z; and 2z and ¢ is
some constant [261, section 3.2]. Our work leverages this connection between random utility
models and choice-response-time models to estimate human utilities using both choices and
response times.

We hypothesize that our key insight, that response times provide complementary infor-
mation, especially for queries with strong preferences, extends beyond the dEZDM and the
specific logistic link function oj,g;stic. Many psychological models capture both choices and
response times but lack closed-form choice distributions. In such cases, the choice probability
is often expressed as P[z; = 23] = o' (u.,,us,), where o' is a function of u,, and u,, without
a closed form. Fixing u., and varying u,, defines the psychometric function (-, u.,), which
typically exhibits an “S” shape [336, fig. 1.1]. As preferences become stronger, o' flattens,
similar to figs. 4.1b and 4.1c, suggesting that choices carry less information. We conjecture
that response times remain a valuable complementary signal in such cases.

If we further assume the choice probability depends only on the utility difference, u,, —u.,,
then P[z; = 2] = o*(u., — u.,), where the link function ot is typically assumed to be strictly
monotonic and bounded within [0, 1] [261, section 3.2]. These properties naturally produce an
“S”-shaped curve that flattens as preferences become stronger, again suggesting that choices
provide less information. In such cases, we conjecture that response times can complement
choices to enhance learning.

In summary, BAMs, like DDMs and race models, offer a strong theoretical framework for
understanding human decision-making, supported by both behavioral and neurophysiological
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evidence. These models have been widely applied to choice prediction and the study of
human cognitive processes. Our work connects BAMs with bandit algorithms by introducing
a computationally efficient estimator for online preference learning. Future research could
explore other BAM variants to further examine the benefits of incorporating response times.
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A.2 Proofs

A.2.1 Parameters of the difference-based EZ-Diffusion Model
(dEZDM) [43, 251]

Given a human preference vector 6*, for each query z € X', the utility difference is defined as
u, = 2 '0*. In the dEZDM model (introduced in section 4.1), with barrier a, according to
Wagenmakers, Van Der Maas, and Grasman [43, eq. (4), (6), and (9)], the human choice ¢,
has the following properties:

1 exp (—2auy)
Ple,=1)= C Pley=—1) = .
(c ) 1+ exp (—2au,) (c ) 1 + exp (—2au,)
Thus, the expected choice is E[c,] = tanh(au,), and the choice variance is V[c,|] = 1 —

tanh(au,)? (restating eq. (4.1)).
The human decision time ¢, has the following properties:

- . (restating eq. (4.1)),
a ifu, =0

E[t,] = {ﬁtanh(aux) if u, #£ 0

Ug (exp(2au)+1)2

Vitz] =
& 2a*/3 if u, =0

{%exp(4aum)—1—4auxexp(?aux) if U, 7& 0

From this, we obtain the following key relationship:

£t (i)

All these parameters depend solely on the utility difference u, := 2 "6* and the barrier a.

A.2.2 Asymptotic normality of the choice-decision-time estimator
for estimating the human preference vector 6*

We now present the proof of the asymptotic normality result for the choice-decision-time
estimator, 0cy pr, as stated in theorem 4.2.1, which is restated as follows:

Theorem 4.2.1 (Asymptotic normality of §CH7DT). Given a fized 1.i.d. dataset, denoted by
{x, Casp.i5 tcc7sw,i}ie[n] for each x € Xsgmpie, where erx zx' > 0, and assuming that the

sample

datasets for different x € Xsumpie are independent, then, for any vector y € R, as n — oo,
the following holds:

Vny' (é\CH,DT,n — 9*/a> L, N(0,¢?/a?).

Here, the asymptotic variance depends on a problem-specific constant, (2, with an upper
bounded:

2 2
¢ < ||y||<

[minz/ex E[tlz]]-xxT>7l '

ZIEX

sample sample
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Proof. To simplify notation, we define:

3

é\z - l icx,szyﬂ Cm E Cx y ,?:m -

n <
i=1 =1

te 50,00 =E[t,]. (A.1)

BIH

For brevity, we abbreviate Xgmple as X and é\CH,DT,n as 0. The estimator 6 can be expressed
as:

(restating eq. (4.3)).

ﬁ>| o)

- (o) 'S

z'eX reX

We rewrite 6*/a as:

1
0*
0% /a = < nx’x/T) nrx' —
a
r'eX zeX
—1 C (AQ)
= <Z nx'x’T) nw ?z
z'eXx TEX z

Therefore, for any vector y € R?, we have:

<9——) =y (;{n:vxT)_lxze;{nx(

where &, is defined as &, ==y (3, oy na's’ T) nz. In eq. (A.3), the only random variables
are C, and 7,. For simplicity, for rany x; € X = {1, , 22|}, We shghly abuse the notation

and use &, ¢, t;, C;, T;, C and ’T denote &,., ¢y, oy Coyy Ty, sz, and ’T respectively. By
applying the multidimensional central limit theorem, we have:

Co
_ ﬁ) Z &, <? 7') (A.3)

TEX

?DI $

i é\l 0 [ V] cov [eq, t]
7. —¢c cov [ty,c1]  V[tq]
NG : 2N o,
Cla| = Clay Vx|  cov et
| 7ix) = Cla) I cov [t ]V [

_ N(O,diag [V e, VitV em] Y [ta] ])
(A4)

In the first line of eq. (A.4), the block-diagonal structure of the covariance matrix emerges
because (C;, 7})2-6“ x| are independent of each other. For any fixed x;, to derive the second
line of eq. (A.4), we use the fact that:

E [tici] - iP)(cZ- —DE[L-tie =1 +P(c;=—1)E[-1-t|c; = —1]

D P(e;=1)—P(e; = —1)E[tie; = 1] (A.5)
=E[c¢]E[t],
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where (i) is because E[t;|c; = 1] = E[t;]c; = —1] [262, eq. (A.7) and (A.9)]. Therefore,
q. (A.5) implies that cov(c;,t;) = 0 !, which justifies the Second line of eq. (A.4).
Now, let us define the function g(cl,tl,- CLcx ) = Zze[m] & ¢;/ti. The gradient of

g is:
V0l (b1 i) = (S0 =&/t G/t “Guiew/th] . (A6)

Using the multivariate delta method, we obtain:

rrefd

i€l|X]]

=i (9(C. 70+ .Gy Tiwg) =9 (Cu Tivo+ G, Ti))

Vil _
V[ti]
D
— N0, ng'(Cllev""C\xﬂX\) Vg‘(clﬁ,--wcwﬂm)
V [ex]

i V [ty

—~(o 3 e (%V(q) *%V(ti))

ic[|x]] ! ‘

=N Zg (%Vq ;CEV( ))

ie[|X]) ¢

(A7)

By applying the identities outlined in appendix A.2.1, we can establish the following
identity:
a? a’C? 1

V(e V() = o2 (A.8)

Vi e [|X]]:

Substituting this identity into eq. (A.7), we obtain:

\/_Z@(A i)& 0oLy el) (A9

il X] Ti iellx|] Ti

'Equation (A.5) implies that for any query a;, the human choice ¢; and decision time t; are uncorrelated.
Moreover, they are independent, as discussed by Drugowitsch [337, the discussion above eq. (7)] and Baldassi
et al. [332, proposition 3].
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Finally, the asymptotic variance can be upper bounded as follows:

_Zg

’L

zGHXH
1 1
BRI T
a2 MIN;e(| x| Ti z’e[%l]
1 _1 _1
;0T 2 T '
= y nrx e e ’
| —1
= T ’ x
a2 mlIlze [l T <a;k' )
1 -1
. . ! IT
_ L min 7: rr
2 (a%( LG[IXI] ] ) ’
1

2
ﬁ ||y|| (Zz/ex [minie[\x\] ﬂ]x/x’T)A
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A.2.3 Non-asymptotic concentration of the two estimators for esti-
mating the utility difference u, given a query x

The choice-decision-time estimator

Section 4.2.3 focuses on the problem of estimating the utility difference for a single query.
Given a query z € X, the objective is to estimate the utility difference u, := " 6* using an
i.i.d. dataset, denoted by {(cz,sm,tx,sz,i)}ie[ny].

We begin by applying the choice-decision-time estimator from eq. (4.3), which is derived
by solving the following least squares problem:

2
~ > Cos. .

. 1€Ng Z,8z,i
Ocupr = arg min g Ny <xT6’ - #> )

beRT Ly 2 icing] oo
Similarly, the utility difference for a single query is estimated as the solution to the following
least squares problem, yielding the estimate:

2
Zie[n ] Ca,s4., Zze[n ] Cr50,i

Uy,cupr = argmin | u — = : = - — (restating eq. (4.5)).

ueR ( D icne] tossa D iclng] tessa

The resulting estimate, U, cupr, approximates u,/a rather than u,. However, since the
ranking of arm utilities is preserved between u,/a and u,, estimating wu,/a is sufficient for
the purpose of best-arm identification.

For the case where the utility difference u, # 0, the non-asymptotic concentration
inequality for this estimator is presented in theorem 4.2.3. To prove this, we first introduce
lemma A.2.1, which demonstrates that for any given query z, the decision time is a sub-
exponential random variable.

To simplify notation, we define:

~ 1 &

~ 1 & G
Cx:_ T,Sqx,4) CZ':]E x| 7;’:_ txs X E:Etxy AJ; :Tx
Ny ;C e [ez] Ny ; S, [t.], Uscupr =
(A.11)

Lemma A.2.1. Ifu, # 0, then (t, — To) is sub-exzponential SE (V2 a,), where v, = v/2a/|u,|
and o, = 2/u?.

Proof. For simplicity, we will omit the subscript x throughout the proof and assume, without
loss of generality, that u > 0.
Our objective is to establish the following inequality, which holds for all s € (—u?/2,u?/2):

E(exp(s(t—1T))) <exp <2a 2/u 32> : (A.12)

This implies that (¢ — 7)) is sub-exponential SE (12, «), as defined by Wainwright [338,
Definition 2.7].
Step 1: Transform eq. (A.12) into a more manageable inequality (eq. (A.18)).
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Using Cox [339, eq. (128)], with A i=u? — 2s, #; == —u — VA and 6, = —u+ VA, we

have?:

exp (aby) — exp (2a0; + ab)  exp (ab) — exp (2a1 + aby)

]E pum—
(exp (st)) exp (2a6,) — exp (2abs) exp (2a6;) — exp (2abs)
_exp(abh) [1 +exp (abh + ab)]  exp (aba) [1 + exp (abz + ab)]
~ exp(2a6)) — exp (2aby) exp (2a6;) — exp (2abs)

lexp (afy) — exp (abs)] [1 4 exp (aby + aby)]
exp (2ab;) — exp (2aby)
1 + exp (aby + aby) (A.13)
exp (aby) + exp (abs)
exp (—au) + exp (au)

exp (—m/Z) + exp <a\/z>
N
= m

In the last line, we define N = 2 cosh(au) and D(s) = 2cosh(ayv/A). Thus, we arrive at:

N 1 N
E(exp(s- (¢ = 7)) = D(s) exp(s-T) " exp (satanh(au)/u) D(s) (A.1)

To prove the original inequality in eq. (A.12), it is now sufficient to show:
a a’
D(s) - exp (— tanh(au)s + —s ) > N. (A.15)
u u
For s = 0, the inequality holds trivially, as:
D(0) -1 =2cosh(au) = N. (A.16)
For s # 0, taking the derivative of the left-hand side of eq. (A.15) yields:

d a at
o (D(s) - exp <a tanh(au)s 4+ i ))
2

2
- a T2 (2 VAY - (2 a
= exp (u tanh(au)s + ok ) ( sinh (a A) + 2 cosh (a A) (u tanh(au) + 2u2 s))

VA
= 2exp (ﬁ tanh(au)s + a—252) cosh (WZ) - (—i tanh (aﬂ) +2 tanh(au) + 2a—25)
u u? VA u u?
(A.17)
In step 2, we will prove the following inequality:
2
—% tanh (aﬂ) + %tanh(au) + 2%3 { i 8: zz i 8: (A.18)

2In Cox [339, eq. (128)], setting a = 2a and z = a leads to the desired result.
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Equation (A.18) implies that D(s) - exp (% tanh(au)s + 3—252> > N, which finishes the proof.
Step 2. Prove eq. (A.18).
For s > 0, the following holds:

2
— % tanh <a A) +2 tanh(au) + 2a—2s
u u

VA

(@) 1 1 a?
> a tanh (a\/ A) (— — —> +2—s
- u A u?
2

—2s a
= atanh (aﬂ) TR (\/Z-|— u> + QES

a2 tanh (aﬂ) a2

(A.19)

= —25- +2—s
u (\/Z + u) avA u?
(i7) 2 2
> — 25a—2 -1 4 2a—28
U U

= 0.

Here, (i) follows from tanh(au) > tanh(av/A) = tanh(avu? — 2s) and (i) follows from
tanh(x)/xz < 1.
For s < 0, the following holds:
2
a a a
— —tanh <a A) + " tanh(au) + 2;5

VA

(i) 2
< g tanh (a\/g) (é — %) + 2a—s

a2 . tanh (aﬂ) a2 (A.20)

= —2s- +2—s
u (\/Z + u) avVA u?
(i) 2 2
< —2s 1425
u u

= 0.

Here, (i) follows from tanh(au) < tanh(avA) = tanh(avu? — 2s) and (i) follows from
tanh(z)/z < 1.

By combining both cases, we conclude that the inequality in eq. (A.18) holds, which
completes Step 2 and proves the desired result. O

Next, we prove theorem 4.2.3, which provides the non-asymptotic concentration inequality
for the estimator from eq. (4.5), restated as follows:

Theorem 4.2.3 (Non-asymptotic concentration of U, cupr). For each query x € X with
u, # 0, given a fized i.i.d. dataset, denoted by {(cxvsﬁyi,th’i)} E for any € > 0 satisfying

iE[nac
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e < min {|u,|/(V2a), (1 + v2) alu,|/E [t.]}, the following holds:

B

where mgg pr" (2760%) = E[t,] / [(2+2V2) a].

Tonor = | > ¢) < dew (= [miGEE" (76)) me fe-al?).

Proof. For clarity, we will omit the subscripts x throughout this proof. Based on lemma A.2.1,
we define the constants v = v/2a/|u| and a == 2/u>.

We begin by introducing ec == 7/ (V2 4+ V2v|C|/T) - € and €7 = vec. From the identities
provided in appendix A.2.1, we know that v|C|/T = v/2a/|u| - |u|/a = /2. This allows us to
simplify the constants ¢ and e as:

€ :—T e and € :—VT € A.21
T V2(V2+) TTVa(Vat) (A21)

For any e satisfying the following condition:

egmin{l,w}, (A.22)

we observe that ez < min {7(1 — 1/v/2),v?/a}. We can now apply lemma A.2.2 to derive
the following:

P (‘?— T‘ > 67) < 2exp (—ﬁ) : (A.23)

202
Thus, by combining the results, we conclude:
c ¢

T T

c ¢

Pll=—
(7

£l e

(‘)IP’QCA—C‘ >ec)+IP’(‘7A’—T‘ >67—>

(i) nes nex
< 2exp (—7) + 2exp (_W (A.24)

o~

6c+€7'- ‘Cl/T
2
> /2 = )

-t ()
_4exp — 5 * NE .
1 (14 V72)

Here, (i) follows from lemma A.2.3, (ii) uses lemma A.2.2 and eq. (A.23), and (éi7) follows
from eq. (A.21). O

Supporting Details
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Lemma A.2.2. For each query x with u, # 0, and constants e > 0 and er € (0,2/ay,], the
following inequalities hold:

P )< 2o (-555). B

Here, the constants are v, = v/2a/|ug| and ay = 2/u2.

,7—

~
C:v_ T

8

2
— 7;‘ > eT> < 2exp <—ZZ§> . (A.25)

Proof. Since ¢, € {—1,1}, by applying Hoeffding’s inequality [338, proposition 2.5|, we

obtain:
2
~ neg
< —— . .
IP’( - >_2exp( 2> (A.26)

From lemma A.2.1, we know that ¢, is sub-exponential SE(v?, ). By applying Wain-
wright [338, proposition 2.9 and eq. (2.18)], we obtain:

]P’(A—

ne3

2| > 67) < 2exp (— 2;;) . Ver € (0,07 /ay). (A.27)

xT

x

]
Lemma A.2.3. Consider constants C € R, T >0, ¢¢ > 0, and e € (O, (1— 1/\/5)7) For
any C € [C —€c,C+e€c| and T € [T — €7, T + €7, the following inequality holds

€c+€7'"C’/7
——| <2 ) A2
T < V2 T (A.28)

| )

Proof. The maximum value of ’(/3\ / T-C /T | is attained at the extremum of C, / T. Since

C/T is linear in C, the extremum of C/T is attained at C* € {C — €,C + ec} for any
T € [T —er, T +¢e7] > 0. Given that T > 0, the extremum of C’*/T is attained at
T* € {T — e7, T + er}. Therefore, the extremum of C/7 lies in the set:

Q\G{C—EC C—ec C+e C+€C}
’/7\- T—ET’ 7-—|-€7’7 T—ET’ T+ er ’

~ max
_Ce[C—ec Ctec]
Te[T—er, T+er]

(A.29)

For any combination (s¢,s7) € {#1} x {#1}, and using the function e7 < (1 — 1/3/2)T, we
have:

ScecT — sterC < ecT + e7|C] < \/5607--1- er|C| ‘

Ctscee  C (A.30)
T + syer T + 87’67—) - T (T - 67’) B T? .
By combining these results, we conclude that:
cC ¢ C C
max S-S e | SEsee G\ et erlC/T
Gelc—cectec] | T T| Gespelyx (= |T +srer T T
7:6[7‘—67’77‘-"-67’]
O
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The choice-only estimator

We now apply the logistic-regression-based choice-only estimator from eq. (4.4) to estimate
the utility difference for a single query. Recall that for each query x € X, the human
choice ¢, € {—1,1}. We define the binary-encoded choice as e, := (¢, + 1) /2 € {0,1}. We
reformulate the MLE in eq. (4.4) into a utility difference estimation problem for a single
query, leading to the following optimization problem:

UycH = argmax Z log pi(cz.s,, 1)

u€eR i€lna]
= angmax D Tog [(u(u))" - (u(—u))' "]
“ 1€ [ng]

The first-order optimality condition provides the optimal solution:

. 1 .
Upcn=p ' [ — Z €50, (restating eq. (4.6)),

n
T icing]

where =t (p) = log (p/(1 — p)) is the logit function (also known as the log-odds), defined as
the inverse of the function pu(-) introduced in eq. (4.4).

The resulting estimate, U, cm, from eq. (4.6) gives an estimate of 2au,, not u,. However,
since the ranking of arm utilities based on 2au, is the same as that based on the true u,,
estimating 2au, suffices for identifying the best arm.

The non-asymptotic concentration inequality for this estimator is stated in theorem 4.2.4.
This result is directly adapted from Jun et al. [258, theorem 5|, by letting 1 = -+ =2, =1
and teﬁ‘ =d=1.
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A.3 Experiment details

Our empirical experiments (section 4.4) were conducted on a MacBook Pro (M3 Pro, Nov
2023) with 36 GB of memory.

Our implementation is available via https://shenlirobot.github.io/pages/NeurIPS24.html.
The code is written in Julia and builds on the implementation by Tirinzoni and De-
genne [340], where the transductive and weak-preference designs are solved using the
Frank-Wolfe algorithm [253]. Their code is accessible at https://github.com/AndreaTirinzoni/
bandit-elimination. Simulations and Bayesian inference for the DDM are implemented using
the Julia package SequentialSamplingModels. j1, available at https://itsdfish.github.io/
SequentialSamplingModels.jl/dev/#SequentialSamplingModels.jl.

For a query = € X, the estimators from Wagenmakers, Van Der Maas, and Grasman [43]
and Xiang Chiong et al. [270], analyzed in section 4.2.3 and benchmarked in section 4.4.2,
require calculating p~!(p) = log (p/ (1 — p)), where u~'(-) is the logit function and p =
ng - >0 (cmw. + 1) /2 represents the empirical mean of the human binary choices coded
as 0 or 1. Since p = 0 or p = 1 makes this calculation undefined, we follow Wagenmakers,
Van Der Maas, and Grasman [43, the discussion below fig. 6] and approximate p as 1 —1/(2n,)

when p =1 and 1/(2n,) when p = 0.

A.3.1 The “Sphere” Synthetic Problem for Evaluating Estimation
Performance in section 4.4.1

We evaluate estimation performance using the “sphere” synthetic problem, a standard bench-
mark in the linear bandit literature [272, 274, 275|. In this problem, the arm space
Z C {2z € R%:|z|]]a = 1} contains 10 randomly generated arms. To define the true
preference vector 6*, we select the two arms z and 2’ that are closest in direction, i.e.,
(2,2') € argmax, .z z' 2/, and set 0 = 2+ 0.01(2' — z). In this way, z is the best arm. The
query space is X = {z — 21 z € Z}.
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A.3.2 Processing the food-risk dataset with choices (-1 or 1) [44]

We accessed the food-risk dataset with choices (-1 or 1) [44] through Yang and Krajbich
[256]’s repository (https://osf.io/d7s6c/). This dataset includes the choices and response
times of 42 participants, each responding to between 60 and 200 queries. Each query compares
two arms, with each arm containing two food items. By selecting an arm, participants had
an equal chance of receiving either food item, hence the name “food risk” (or “food-gamble”)
task. Additionally, participants’ eye movements were tracked during the experiment. Yang
and Krajbich [256] modeled each participant’s choices, response times, and eye movements
using the attentional DDM [46], where the drift for each query is a linear combination of the
participant’s ratings of the four food items in the query, with the weights adjusting based on
their eye movements. The ratings, € {—10,-9,...,0,...,9,10}, were collected before the
participants interacted with the binary queries.

In our work, for each participant, we define each arm’s feature vector as the participant’s
ratings of the two corresponding food items, augmented with second-order polynomials. We
fit each participant’s data to a difference-based EZ-diffusion model [43, 251] with a linear
utility structure, as introduced in section 4.1. For each participant, using Bayesian inference
with non-informative priors [45], we estimated the preference vector §* € R5, non-decision
time t,ondec, and barrier a. Across participants, the barrier a ranged from 0.715 to 2.467, with
a mean of 1.437, and t,on4ec Tanged from 0.206 to 1.917 seconds, with a mean of 0.746 seconds.
This procedure generated one bandit instance per participant, with a preference vector
0* € R5, an arm space Z C R® where | Z]| € [31,95], and a query space X = {z — 2/: z € Z}.
Then, we used the fitted models to simulate human feedback for bandit experiments.

For each bandit instance, we benchmarked the followmg six GSE variations (mtroduced in

sectlonA4 4. 2) (Atransa GCH DT) </\tran57 QCH R']T) ()\transa GCH) ()\wealw GCH) ()\trans; GCH loglt) and
(Atrans, OcH DT logit)- For each GSE variation, we ran 300 repeated simulations under different
random seeds, with human choices and response times sampled from the dEZDM with the
identified parameters. Since each bandit instance contains a different number of arms, rather
than tuning the elimination parameter 7 in algorithm 1 for each instance, we set n = 2,
following the convention in previous bandit research, e.g., Azizi, Kveton, and Ghavamzadeh
[257, section 3]. We manually tuned the buffer size By, in algorithm 1 to 20, 30, or 50
seconds based on empirical performance, ensuring the budget was not exceeded in each phase.
The full results are shown in fig. A.1, with selected results highlighted in fig. 4.4a.
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Figure A.1: A violin plot overlaid with a box plot showing the best-arm identification error
probability, P [ # 2*], as a function of budget for each GSE variation, simulated using the
food-risk dataset with choices (-1 or 1) [44], as described in appendix A.3.2. The box plots
follow the convention of the matplotlib Python package. For each GSE variation and budget,
the horizontal line in the middle of the box represents the median of the error probabilities
across all bandit instances. Each error probability is averaged over 300 repeated simulations
under different random seeds. The box’s upper and lower borders represent the third and
first quartiles, respectively, with whiskers extending to the farthest points within 1.5x the
interquartile range. Flier points indicate outliers beyond the whiskers.
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A.3.3 Processing the snack dataset with choices (yes or no) [45]

We accessed the snack dataset with choices (yes or no) [45] through the supplementary
material provided by Alés-Ferrer, Fehr, and Netzer [240| at https://www.journals.uchicago.
edu/doi/abs/10.1086/713732. This dataset consists of training and testing data. The training
data was collected from a “YN” task, where 31 participants provided binary feedback (“Yes”
or “No”) and response times for queries comparing each of the 17 snack items to a fixed
reference snack, with each query repeated 10 times. The reference snack, assigned a utility
of 0, remained fixed throughout the experiment. The testing data was collected using a
two-alternative forced-choice task, where participants provided binary choices and response
times for queries comparing two snack items, with each query repeated once. Clithero [45] fit
a difference-based EZ-diffusion model [43, 251] to the training data using Bayesian inference
with non-informative priors, without imposing a linear utility structure, and tested the model
using the testing data.

In our work, we fit each participant’s training data to a difference-based EZ-diffusion
model with a linear utility structure, as described in section 4.1, and used the fitted model to
simulate human feedback for bandit experiments. We pre-processed the data by removing
outliers, following Clithero [45, footnote 22|, excluding trials with response times below 200
ms or greater than five standard deviations above the mean. After cleaning, the number of
trials per participant ranged from 167 to 170. Since the dataset does not provide feature
vectors for the 17 non-reference snack items, we used one-hot encoding to represent each
snack item as a feature vector in R'". This allowed us to construct a bandit instance for each
participant with a preference vector * € R!", an arm space Z C R'T with |Z] = 17, and
a query space X = {z — 0: z € Z} to represent comparisons with the reference snack. We
applied Bayesian inference with non-informative priors [45]| to estimate each participant’s
preference vector 6%, non-decision time t,on4ec, and barrier a. Across participants, the barrier
a ranged from 0.759 to 1.399, with a mean of 1.1, and ?,on4cc ranged from 0.139 to 0.485
seconds, with a mean of 0.367 seconds. R

For each of the following six GSE variations (introduced in section 4.4.2): (Atrans, fcu.pr),
()\transy GCH,R’]T), (Atran& QCH)a ()\weaka OCH)a (/\tran57 QCH,logit); and (Atran& QCH,DT,logit)y we tuned
the elimination parameter 7 in algorithm 1 using the following procedure: We considered
n € {2,3,4,5,6,7,8,9}, resulting in the number of phases = ﬂog77 ]ZH = ﬂogn(ﬁﬂ (line
4 of algorithm 1) being {5, 3,3,2,2,2,2,2}, respectively. We excluded n > [17/2] = 9, as
those cases also result in 2 phases, the same as n € {5,6,7,8,9}. Then, for each 7, for each
of the 31 bandit instances, and for each time budget € {50, 75,100, 125, 150, 200, 250, 300}
seconds, we ran 50 repeated simulations per GSE variation under different random seeds,
sampling human feedback from the fitted dEZDM. We then aggregated the results into a
single best-arm identification error probability for each GSE variation, n, bandit instance,
and budget. These error probabilities were compiled into violin and box plots, as shown in
fig. A.2.

For each GSE variation, we selected the 1 that minimized the median error probability,
as shown in the box plots in fig. A.2. If multiple n values yielded the same median, we used
the third quartile, and if necessary, the first quartile, to break ties. Based on this approach,
we selected: 1 = 6 for (Arans: Ocupr), 7 = 6 for (Aans, @curr), 7 =9 for (Atvans, Ocu), 7 =9

for ()\weaka 90H)7 n= 9 for ()\tran57 QCH,logit); and n= o for ()\tranSa QCH,DT,logit)
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After tuning 1, we manually set the buffer size By, in algorithm 1 to 10 seconds based on
empirical results, ensuring the budget was not exceeded in any phase. We then benchmarked
each GSE variation on all 31 bandit instances using its own manually tuned n and Byp,g.
Each variation was evaluated over 300 repeated simulations with different random seeds,
where human choices and response times were sampled from the dEZDM with the identified
parameters. The full results are shown in fig. A.3, with selected results presented in fig. 4.4b.
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Figure A.2: Violin plots overlaid with box plots, used for tuning the elimination parameter n
in algorithm 1 for each GSE variation, simulated based on the snack dataset with choices
(yes or no) [45], as discussed in appendix A.3.3. Each plot shows the best-arm identification
error probability, P [z # z*|, as a function of . The box plots follow the convention of the
matplotlib Python package. The horizontal line in each box represents the median of the
error probabilities across all bandit instances and budgets. Each error probability is averaged
over 50 repeated simulations under different random seeds. The top and bottom borders of
the box represent the third and first quartiles, respectively, while the whiskers extend to the
farthest points within 1.5x the interquartile range. Flier points are the outliers past the end
of the whiskers.
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Figure A.3: A violin plot overlaid with a box plot showing the best-arm identification error
probability, P [ # 2*], as a function of budget for each GSE variation, simulated using the
snack dataset with choices (yes or no) [45], as described in appendix A.3.3. The box plots
follow the convention of the matplotlib Python package. For each GSE variation and budget,
the horizontal line in the middle of the box represents the median of the error probabilities
across all bandit instances. Each error probability is averaged over 300 repeated simulations
under different random seeds. The box’s upper and lower borders represent the third and
first quartiles, respectively, with whiskers extending to the farthest points within 1.5x the
interquartile range. Flier points indicate outliers beyond the whiskers.
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A.3.4 Processing the snack dataset with choices (-1 or 1) [46]

We accessed the snack dataset with choices (-1 or 1) [46] via Fudenberg, Strack, and Strzalecki
[330]’s replication package at https://www.aeaweb.org/articles?id=10.1257 /aer.20150742.
This dataset contains choices and response times from 39 participants, each responding to
between 49 and 100 queries comparing two snack items. Participants’ eye movements were
tracked during the experiment. Krajbich, Armel, and Rangel [46] modeled each participant’s
choices, response times, and eye movements using the attentional DDM, where the drift for
each query is a linear combination of the participant’s ratings of both snack items in the query,
with the weights influenced by their eye movements. The ratings, € {—10,-9,...,0,...,9,10},
were collected before participants interacted with the binary queries.

In our work, to avoid creating trivial bandit problems by encoding snack items as 1-
dimensional vectors (as done in appendix A.3.2), we defined the feature vector for each snack
item with a participant rating r, € {—10,-9,...,0,...,9,10} as a one-hot vector in R*!,
where the (7, + 11)-th element is 1 and the rest are 0. The preference vector §* is structured
as * - [-10,—9,...,0,...,9,10]" € R?' where 3* is participant-specific and unknown to
the learner. This ensures that, for each arm z, the participant’s utility is u, = 2"0* = r,8*.
In this way, each participant’s data generated a bandit instance with a preference vector
6* € R?! a set of arms Z C R*! with |Z| = 21, and a query space X = {z — 2': z € Z}.

We fit each participant’s data to a difference-based EZ-diffusion model [43, 251] using
the linear utility structure described above. For each participant, using Bayesian inference
with non-informative priors [45], we estimated the preference vector 8* (or equivalently, the
parameter *), non-decision time tyonqec, and barrier a. Across participants, the barrier
a ranged from 0.75 to 2.192 with a mean of 1.335, and t,ongec Tanged from 0.387 to 1.22
seconds with a mean of 0.641 seconds. We then used these fitted models to simulate human
feedback for bandit experiments, assuming the learner did not know the underlying structure
0* = p* - [—10,-9,...,0,...,9,10]".

For each of the following GSE variations (introduced in section 4.4.2): (Agrans, é\CH,DT),
()\tranm QCH,RT)7 ()\transa 9CH)7 ()\chaka HCH); ()\transa QCH,lOgit)a and ()\transa HCH,DTJogit)y we tuned
the elimination parameter n in algorithm 1 using the following procedure: We considered n €
{2,3,4,5,6,7,8,9,10, 11}, which resulted in the number of phases = ﬂog77 1Z]] = ﬂogn(17ﬂ
(line 4 of algorithm 1) being {5, 3,3,2,2,2,2,2,2,2}, respectively. We excluded cases where
n > [21/2] = 11, as these result in 2 phases, identical to when n € {5,6,7,8,9,10,11}.
Then, for each n, for each of the 39 bandit instances, and also for each time budget
€ {150,200, 250, 300, 350, 400, 450, 500} seconds, we ran 50 repeated simulations per GSE
variation under different random seeds, sampling human feedback from the fitted dEZDM.
We then aggregated the results into a single best-arm identification error probability for each
GSE variation, n, bandit instance, and budget. These error probabilities were compiled into
violin and box plots, as shown in fig. A.4.

For each GSE variation, we selected the n that minimized the median error probability,
as shown in the box plots in fig. A.4. If multiple n values yielded the same median, we used
the third quartile, and if necessary, the first quartile, to break ties. Based on this approach,
we selected: 1 = 4 for (Aqans; Ocu,pr), 7 = 4 for (Agans, QCH,RT)a n =4 for (Ayans, Ocu), n =2
for ()\W-eaka QCH)a n= 5 for ()\transa 0CH,10git>a and n= 5 for ()\transa QCH,DT,logit)-

After tuning 7, we manually set the buffer size By.g in algorithm 1 to 20 seconds based on
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empirical results, ensuring the budget was not exceeded in any phase. We then benchmarked
each GSE variation on all 39 bandit instances using its own manually tuned 7. Each variation
was evaluated over 300 repeated simulations with different random seeds, where human
choices and response times were sampled from the dEZDM with the identified parameters.
The full results are shown in fig. A.5, with selected results presented in fig. 4.4c.
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Figure A.4: Violin plots overlaid with box plots, used for tuning the elimination parameter n
in algorithm 1 for each GSE variation, simulated based on the snack dataset with choices
(-1 or 1) [46], as discussed in appendix A.3.4. Each plot shows the best-arm identification
error probability, P [z # z*|, as a function of . The box plots follow the convention of the
matplotlib Python package. The horizontal line in each box represents the median of the
error probabilities across all bandit instances and budgets. Each error probability is averaged
over 50 repeated simulations under different random seeds. The top and bottom borders of
the box represent the third and first quartiles, respectively, while the whiskers extend to the
farthest points within 1.5x the interquartile range. Flier points are the outliers past the end
of the whiskers.
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Figure A.5: A violin plot overlaid with a box plot showing the best-arm identification error
probability, P [ # 2*], as a function of budget for each GSE variation, simulated using the
snack dataset with choices (-1 or 1) [46], as described in appendix A.3.4. The box plots follow
the convention of the matplotlib Python package. For each GSE variation and budget,
the horizontal line in the middle of the box represents the median of the error probabilities
across all bandit instances. Each error probability is averaged over 300 repeated simulations
under different random seeds. The box’s upper and lower borders represent the third and
first quartiles, respectively, with whiskers extending to the farthest points within 1.5x the
interquartile range. Flier points indicate outliers beyond the whiskers.
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